Project: Research project

Project Details


The proposed experiments are based on the hypothesis that distinct
neuroanatomical regions of the CNS of the rat will regulate immune cells
differently in vivo, depending on the local profile of neurochemicals.
Specifically, two major aspects of the cell-mediated immune response which
are enhanced following interferon-gamma) injection - T cell traffic and MHC
expression - are proposed to be differentially regulated by local CNS
environments. Here, these aspects of immune function following INFO-gamma
injection in the following regions: (1) the nucleus of the solitary tract
(NTS), a brainstem region with primarily inhibitory neurochemicals, (2) the
hippocampus, an area containing mainly excitatory neurotransmitters, and
(3) the hypothalamus, a region with an abundance of neurohormones. The
regulatory environments of the hippocampus and the hypothalamus are
proposed to suppress T cell traffic and/or MHC expression, while
enhancement of these parameters is expected to occur in the NTS.
Pharmacological antagonists against specific neurochemicals will then be
used to attribute differential regulation of immune function to major
neurotransmitters. Finally, lesion formation after induction of
experimental allergic encephalomyelitis, an animal model of multiple
sclerosis, will be examined in these neuroanatomical regions to determine
if pharmacological manipulation of neurotransmitters affects inflammation.
The proposed studies will add insight into the factors that regulate the
immune response to antigen in the CNS.
StatusNot started


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.