A chondral modeling theory revisited

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.

Original languageEnglish (US)
Pages (from-to)201-208
Number of pages8
JournalJournal of Theoretical Biology
Volume201
Issue number3
DOIs
StatePublished - Dec 7 1999
Externally publishedYes

Fingerprint

Cartilage
cartilage
Joints
Ontogeny
Hydrostatic Pressure
Articular Cartilage
Hydrostatic pressure
Modeling
Extremities
limbs (animal)
Cell
Chondrocytes
Growth
ontogeny
Mammals
Phylogeny
chondrocytes
Tendons
Structure-function
frost

ASJC Scopus subject areas

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Cite this

A chondral modeling theory revisited. / Hamrick, Mark W.

In: Journal of Theoretical Biology, Vol. 201, No. 3, 07.12.1999, p. 201-208.

Research output: Contribution to journalArticle

@article{724962206e5f484299d48196e36237e5,
title = "A chondral modeling theory revisited",
abstract = "The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.",
author = "Hamrick, {Mark W}",
year = "1999",
month = "12",
day = "7",
doi = "10.1006/jtbi.1999.1025",
language = "English (US)",
volume = "201",
pages = "201--208",
journal = "Journal of Theoretical Biology",
issn = "0022-5193",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - A chondral modeling theory revisited

AU - Hamrick, Mark W

PY - 1999/12/7

Y1 - 1999/12/7

N2 - The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.

AB - The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.

UR - http://www.scopus.com/inward/record.url?scp=0033534033&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033534033&partnerID=8YFLogxK

U2 - 10.1006/jtbi.1999.1025

DO - 10.1006/jtbi.1999.1025

M3 - Article

VL - 201

SP - 201

EP - 208

JO - Journal of Theoretical Biology

JF - Journal of Theoretical Biology

SN - 0022-5193

IS - 3

ER -