A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets

Ashok Sharma, Robert Podolsky, Jieping Zhao, Richard A. Mcindoe

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Motivation: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a requirement to develop algorithms which are fast and can cluster extremely large datasets without affecting the cluster quality. Clustering is an unsupervised exploratory technique applied to microarray data to find similar data structures or expression patterns. Because of the high input/output costs involved and large distance matrices calculated, most of the algomerative clustering algorithms fail on large datasets (30 000 + genes/200 + arrays). In this article, we propose a new two-stage algorithm which partitions the high-dimensional space associated with microarray data using hyperplanes. The first stage is based on the Balanced Iterative Reducing and Clustering using Hierarchies algorithm with the second stage being a conventional k-means clustering technique. This algorithm has been implemented in a software tool (HPCluster) designed to cluster gene expression data. We compared the clustering results using the two-stage hyperplane algorithm with the conventional k-means algorithm from other available programs. Because, the first stage traverses the data in a single scan, the performance and speed increases substantially. The data reduction accomplished in the first stage of the algorithm reduces the memory requirements allowing us to cluster 44 460 genes without failure and significantly decreases the time to complete when compared with popular k -means programs. The software was written in C# (.NET 1.1).

Original languageEnglish (US)
Pages (from-to)1152-1157
Number of pages6
JournalBioinformatics
Volume25
Issue number9
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint Dive into the research topics of 'A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets'. Together they form a unique fingerprint.

Cite this