Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent

Claudia A. Bertuccio, Shih Liang Lee, Guangyu Wu, Michael B. Butterworth, Kirk L. Hamilton, Daniel C. Devor

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.

Original languageEnglish (US)
Article numbere92013
JournalPloS one
Volume9
Issue number3
DOIs
StatePublished - Mar 14 2014

Fingerprint

endosomes
Endosomes
recycling
Recycling
epithelium
Epithelium
Membranes
endocytosis
Ubiquitination
cells
degradation
Endocytosis
Degradation
LLC-PK1 Cells
protein transport
potassium channels
Calcium-Activated Potassium Channels
ion transport
biotin
Madin Darby Canine Kidney Cells

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent. / Bertuccio, Claudia A.; Lee, Shih Liang; Wu, Guangyu; Butterworth, Michael B.; Hamilton, Kirk L.; Devor, Daniel C.

In: PloS one, Vol. 9, No. 3, e92013, 14.03.2014.

Research output: Contribution to journalArticle

Bertuccio, Claudia A. ; Lee, Shih Liang ; Wu, Guangyu ; Butterworth, Michael B. ; Hamilton, Kirk L. ; Devor, Daniel C. / Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent. In: PloS one. 2014 ; Vol. 9, No. 3.
@article{be2142790dca4eb48c8179205e0e6a2b,
title = "Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent",
abstract = "The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.",
author = "Bertuccio, {Claudia A.} and Lee, {Shih Liang} and Guangyu Wu and Butterworth, {Michael B.} and Hamilton, {Kirk L.} and Devor, {Daniel C.}",
year = "2014",
month = "3",
day = "14",
doi = "10.1371/journal.pone.0092013",
language = "English (US)",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- And Rab8-Dependent and recycling endosome-independent

AU - Bertuccio, Claudia A.

AU - Lee, Shih Liang

AU - Wu, Guangyu

AU - Butterworth, Michael B.

AU - Hamilton, Kirk L.

AU - Devor, Daniel C.

PY - 2014/3/14

Y1 - 2014/3/14

N2 - The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.

AB - The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the m1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells.

UR - http://www.scopus.com/inward/record.url?scp=84898451747&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84898451747&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0092013

DO - 10.1371/journal.pone.0092013

M3 - Article

C2 - 24632741

AN - SCOPUS:84898451747

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 3

M1 - e92013

ER -