Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus

Quanguang Zhang, Hui Tian, Hong Chun Li, Guang Yi Zhang

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Cerebral ischemia induces kainate receptor glutamate receptor 6 (GluR6) binding to the postsynaptic density protein 95 (PSD95), which in turn anchors mixed lineage kinase 3 (MLK3) via SH3 domain in rat brain. MLK3 subsequently activates c-Jun NH2-terminal kinase (JNK) via MAP kinase kinases (MKKs). In this study, we investigated the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3, and the phosphorylation of JNK3 during cerebral ischemia in rat hippocampus CA1. Our results indicate that the GluR6-PSD95-MLK3 complex quickly enhanced at 5 min of ischemia and peaked at 10 min of ischemia, and then gradually reduced with the prolonged time of ischemia. Interestingly, the combination of MLK3 and JNK3 gradually increased from 5 min to 30 min of ischemia. JNK3 phosphorylation first increased and then attenuated in cytosol, suggesting the translocation of activated JNK3 to nucleus during ischemia. To further investigate the possible mechanism of JNK3 activation, antioxidant N-acetylcysteine (NAC) was given to the rats 20 min prior to ischemia. Results indicate that NAC distinctly inhibited the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3 and JNK3 activation. Taken together, these finding indicate that ischemic stimulation results in JNK3 activation through the GluR6-PSD95-MLK3 signaling module, and that the activation of JNK3 is closely related to oxidative stress.

Original languageEnglish (US)
Pages (from-to)159-164
Number of pages6
JournalNeuroscience Letters
Volume408
Issue number3
DOIs
StatePublished - Nov 20 2006
Externally publishedYes

Fingerprint

Glutamate Receptors
Acetylcysteine
Brain Ischemia
Hippocampus
Antioxidants
Ischemia
JNK Mitogen-Activated Protein Kinases
postsynaptic density proteins
mitogen-activated protein kinase kinase kinase 11
Phosphorylation
MAP Kinase Kinase Kinases
Kainic Acid Receptors
src Homology Domains
Cytosol
Oxidative Stress

Keywords

  • Cerebral ischemia
  • Kainate receptor glutamate receptor 6
  • Mixed lineage kinase 3
  • N-acetylcysteine
  • Postsynaptic density protein 95
  • c-Jun NH2-terminal kinase 3

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. / Zhang, Quanguang; Tian, Hui; Li, Hong Chun; Zhang, Guang Yi.

In: Neuroscience Letters, Vol. 408, No. 3, 20.11.2006, p. 159-164.

Research output: Contribution to journalArticle

@article{65adce3cab1c4b43b573235717f1ab60,
title = "Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus",
abstract = "Cerebral ischemia induces kainate receptor glutamate receptor 6 (GluR6) binding to the postsynaptic density protein 95 (PSD95), which in turn anchors mixed lineage kinase 3 (MLK3) via SH3 domain in rat brain. MLK3 subsequently activates c-Jun NH2-terminal kinase (JNK) via MAP kinase kinases (MKKs). In this study, we investigated the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3, and the phosphorylation of JNK3 during cerebral ischemia in rat hippocampus CA1. Our results indicate that the GluR6-PSD95-MLK3 complex quickly enhanced at 5 min of ischemia and peaked at 10 min of ischemia, and then gradually reduced with the prolonged time of ischemia. Interestingly, the combination of MLK3 and JNK3 gradually increased from 5 min to 30 min of ischemia. JNK3 phosphorylation first increased and then attenuated in cytosol, suggesting the translocation of activated JNK3 to nucleus during ischemia. To further investigate the possible mechanism of JNK3 activation, antioxidant N-acetylcysteine (NAC) was given to the rats 20 min prior to ischemia. Results indicate that NAC distinctly inhibited the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3 and JNK3 activation. Taken together, these finding indicate that ischemic stimulation results in JNK3 activation through the GluR6-PSD95-MLK3 signaling module, and that the activation of JNK3 is closely related to oxidative stress.",
keywords = "Cerebral ischemia, Kainate receptor glutamate receptor 6, Mixed lineage kinase 3, N-acetylcysteine, Postsynaptic density protein 95, c-Jun NH2-terminal kinase 3",
author = "Quanguang Zhang and Hui Tian and Li, {Hong Chun} and Zhang, {Guang Yi}",
year = "2006",
month = "11",
day = "20",
doi = "10.1016/j.neulet.2006.07.007",
language = "English (US)",
volume = "408",
pages = "159--164",
journal = "Neuroscience Letters",
issn = "0304-3940",
publisher = "Elsevier Ireland Ltd",
number = "3",

}

TY - JOUR

T1 - Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus

AU - Zhang, Quanguang

AU - Tian, Hui

AU - Li, Hong Chun

AU - Zhang, Guang Yi

PY - 2006/11/20

Y1 - 2006/11/20

N2 - Cerebral ischemia induces kainate receptor glutamate receptor 6 (GluR6) binding to the postsynaptic density protein 95 (PSD95), which in turn anchors mixed lineage kinase 3 (MLK3) via SH3 domain in rat brain. MLK3 subsequently activates c-Jun NH2-terminal kinase (JNK) via MAP kinase kinases (MKKs). In this study, we investigated the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3, and the phosphorylation of JNK3 during cerebral ischemia in rat hippocampus CA1. Our results indicate that the GluR6-PSD95-MLK3 complex quickly enhanced at 5 min of ischemia and peaked at 10 min of ischemia, and then gradually reduced with the prolonged time of ischemia. Interestingly, the combination of MLK3 and JNK3 gradually increased from 5 min to 30 min of ischemia. JNK3 phosphorylation first increased and then attenuated in cytosol, suggesting the translocation of activated JNK3 to nucleus during ischemia. To further investigate the possible mechanism of JNK3 activation, antioxidant N-acetylcysteine (NAC) was given to the rats 20 min prior to ischemia. Results indicate that NAC distinctly inhibited the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3 and JNK3 activation. Taken together, these finding indicate that ischemic stimulation results in JNK3 activation through the GluR6-PSD95-MLK3 signaling module, and that the activation of JNK3 is closely related to oxidative stress.

AB - Cerebral ischemia induces kainate receptor glutamate receptor 6 (GluR6) binding to the postsynaptic density protein 95 (PSD95), which in turn anchors mixed lineage kinase 3 (MLK3) via SH3 domain in rat brain. MLK3 subsequently activates c-Jun NH2-terminal kinase (JNK) via MAP kinase kinases (MKKs). In this study, we investigated the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3, and the phosphorylation of JNK3 during cerebral ischemia in rat hippocampus CA1. Our results indicate that the GluR6-PSD95-MLK3 complex quickly enhanced at 5 min of ischemia and peaked at 10 min of ischemia, and then gradually reduced with the prolonged time of ischemia. Interestingly, the combination of MLK3 and JNK3 gradually increased from 5 min to 30 min of ischemia. JNK3 phosphorylation first increased and then attenuated in cytosol, suggesting the translocation of activated JNK3 to nucleus during ischemia. To further investigate the possible mechanism of JNK3 activation, antioxidant N-acetylcysteine (NAC) was given to the rats 20 min prior to ischemia. Results indicate that NAC distinctly inhibited the association of PSD95 with GluR6 and MLK3, the autophosphorylation of MLK3, the combination of MLK3 with JNK3 and JNK3 activation. Taken together, these finding indicate that ischemic stimulation results in JNK3 activation through the GluR6-PSD95-MLK3 signaling module, and that the activation of JNK3 is closely related to oxidative stress.

KW - Cerebral ischemia

KW - Kainate receptor glutamate receptor 6

KW - Mixed lineage kinase 3

KW - N-acetylcysteine

KW - Postsynaptic density protein 95

KW - c-Jun NH2-terminal kinase 3

UR - http://www.scopus.com/inward/record.url?scp=33749528033&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749528033&partnerID=8YFLogxK

U2 - 10.1016/j.neulet.2006.07.007

DO - 10.1016/j.neulet.2006.07.007

M3 - Article

VL - 408

SP - 159

EP - 164

JO - Neuroscience Letters

JF - Neuroscience Letters

SN - 0304-3940

IS - 3

ER -