TY - JOUR
T1 - Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice
AU - Wang, Z.
AU - He, Yukai
AU - Deng, W.
AU - Lang, L.
AU - Yang, H.
AU - Jin, B.
AU - Kolhe, Ravindra Bharat
AU - Ding, Hanfei
AU - Zhang, J.
AU - Hai, T.
AU - Yan, Chunhong
N1 - Funding Information:
This work was supported by the NIH grant R01CA139107 to CY, and the grants from the National Science Foundation of China (81472178) and the State 973 Program of China (2014CB542005) to WD.
Publisher Copyright:
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
PY - 2018/1/4
Y1 - 2018/1/4
N2 - Mice lacking genes involving in the DNA-damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3 ') mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3 +/+) mice. Consistent with these results, Atf3 ' mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53 +/ ' mice, but did not affect tumor formation in Trp53 /' mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.
AB - Mice lacking genes involving in the DNA-damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3 ') mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3 +/+) mice. Consistent with these results, Atf3 ' mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53 +/ ' mice, but did not affect tumor formation in Trp53 /' mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.
UR - http://www.scopus.com/inward/record.url?scp=85040180427&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040180427&partnerID=8YFLogxK
U2 - 10.1038/onc.2017.310
DO - 10.1038/onc.2017.310
M3 - Article
C2 - 28869597
AN - SCOPUS:85040180427
SN - 0950-9232
VL - 37
SP - 18
EP - 27
JO - Oncogene
JF - Oncogene
IS - 1
ER -