Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: A feasibility study

Marek Elbaum, Alfred W. Kopf, Harold S. Rabinovitz, Richard G.B. Langley, Hideko Kamino, Martin C. Mihm, Arthur J. Sober, Gary L. Peck, Alexandru Bogdan, Dina Gutkowicz-Krusin, Michael Greenebaum, Sunguk Keem, Margaret Oliviero, Steven Wang

Research output: Contribution to journalArticlepeer-review

201 Scopus citations

Abstract

Background: Differentiation of melanoma from melanocytic nevi is difficult even for skin cancer specialists. This motivates interest in computer-assisted analysis of lesion images. Objective: Our purpose was to offer fully automatic differentiation of melanoma from dysplastic and other melanocytic nevi through multispectral digital dermoscopy. Method: At 4 clinical centers, images were taken of pigmented lesions suspected of being melanoma before biopsy. Ten gray-level (MelaFind) images of each lesion were acquired, each in a different portion of the visible and near-infrared spectrum. The images of 63 melanomas (33 invasive, 30 in situ) and 183 melanocytic nevi (of which 111 were dysplastic) were processed automatically through a computer expert system to separate melanomas from nevi. The expert system used either a linear or a nonlinear classifier. The "gold standard" for training and testing these classifiers was concordant diagnosis by two dermatopathologists. Results: On resubstitution, 100% sensitivity was achieved at 85% specificity with a 13-parameter linear classifier and 100%/73% with a 12-parameter nonlinear classifier. Under leave-one-out cross-validation, the linear classifier gave 100%/84% (sensitivity/specificity), whereas the nonlinear classifier gave 95%/68%. Infrared image features were significant, as were features based on wavelet analysis. Conclusion: Automatic differentiation of invasive and in situ melanomas from melanocytic nevi is feasible, through multispectral digital dermoscopy.

Original languageEnglish (US)
Pages (from-to)207-218
Number of pages12
JournalJournal of the American Academy of Dermatology
Volume44
Issue number2
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Dermatology

Fingerprint

Dive into the research topics of 'Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: A feasibility study'. Together they form a unique fingerprint.

Cite this