Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis

Enmei Wang, Jie Wang, Edward Chin, Jian Zhou, Carolyn A. Bondy

Research output: Contribution to journalArticlepeer-review

118 Scopus citations

Abstract

In situ hybridization histochemistry was used to map cellular patterns of gene expression for the insulin-like growth factor (IGF) system in developing murine skeleton from embryonic day 15 (E15) through postnatal day 25 (P25). IGF-I receptor and IGF-II receptor messenger RNAs (mRNAs) are both selectively concentrated in developing chondrocytes and osteoblasts. IGF-II and IGF-binding protein-5 and -6 (IGFBP-5 and -6) mRNAs are abundant in mesenchymal condensations and chondroblasts on E15. Chondrocyte IGF-II mRNA levels remain high, but IGFBP-5 and -6 mRNAs decline significantly as cartilage matures. Low levels of IGFBP-6 mRNA are detected in postnatal chondrocytes up to at least P25, but IGFBP-5 mRNA is no longer detected in chondrocytes after E18. IGF-I and IGFBP-2, -3, and -4 mRNAs are detected in surrounding mesenchymal tissue, but are not detected in mesenchymal condensations or chondrocytes at any stage of development. IGFBP-3 mRNA is localized in sprouting capillaries invading the perichondrium and periosteum throughout development. IGF-I, IGF-II, and IGFBP-2, -4, -5, and -6 mRNAs are detected in osteoblasts localized in zones of endochondral ossification from E18 to at least P25. IGFBP-1 mRNA is not detected in cartilage or bone cells at any stage of development. These data confirm the recent report by Shinar et al. that IGF-II, but not IGF-I, mRNA is detected in rat chondrocytes in vivo and show that this pattern also applies to the mouse. The present study demonstrates, for the first time, the cell-specific patterns of IGF-I and - II receptor and IGFBP-2- to -6 gene expression during the processes of chondro- and osteogenesis in vivo. Interestingly, IGF-II, both IGF receptors, and IGFBP-5 and -6 are simultaneously coexpressed in chondrocyte precursors early in skeletal development, suggesting functional interactions between these specific factors in chondrogenesis. Both IGFs, both IGF receptors, and IGFBP-2, -4, -5, and -6 are all expressed in osteoblasts, providing evidence for potential local interactions between these IGF system components in osteogenesis. Thus, 9 of 10 known components of the IGF system demonstrate dynamic cell-specific patterns of gene expression during chondro- and osteogenesis, supporting the view that the IGF system has a complex and integral role within the developing skeleton.

Original languageEnglish (US)
Pages (from-to)2741-2751
Number of pages11
JournalEndocrinology
Volume136
Issue number6
DOIs
StatePublished - Jun 1995
Externally publishedYes

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis'. Together they form a unique fingerprint.

Cite this