Comparison of 1A GeV 197Au+C data with thermodynamics

The nature of the phase transition in nuclear multifragmentation

R. P. Scharenberg, B. K. Srivastava, S. Albergo, F. Bieser, F. P. Brady, Z. Caccia, D. A. Cebra, A. D. Chacon, J. L. Chance, Y. Choi, S. Costa, J. B. Elliott, M. L. Gilkes, J. A. Hauger, A. S. Hirsch, E. L. Hjort, A. Insolia, M. Justice, D. Keane, J. C. Kintner & 27 others V. Lindenstruth, M. A. Lisa, H. S. Matis, M. McMahan, C. McParland, W. F.J. Müller, D. L. Olson, M. D. Partlan, N. T. Porile, R. Potenza, G. Rai, J. Rasmussen, H. G. Ritter, J. Romanski, J. L. Romero, G. V. Russo, H. Sann, A. Scott, Y. Shao, T. J.M. Symons, M. Tincknell, C. Tuvé, S. Wang, P. Warren, H. H. Wieman, T. Wienold, K. Wolf

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

Multifragmentation MF results from 1A GeV Au on C have been compared with the Copenhagen statistical multifragmentation model (SMM). The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity (energy) dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z≥3 are essentially unaffected when the excitation energy is ≤7 MeV/nucleon. SMM studies suggest that the experimental critical exponents are largely unaffected by cooling and event mixing. The nature of the phase transition in SMM is studied as a function of the remnant mass and charge using the microcanonical equation of state. For light remnants A ≤ 100, backbending is observed indicating negative specific heat, while for A ≥ 170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z ≤ 2 particles are primarily emitted in the initial collision and after MF in the fragment deexcitation process.

Original languageEnglish (US)
Article number054602
Pages (from-to)546021-5460219
Number of pages4914199
JournalPhysical Review C - Nuclear Physics
Volume64
Issue number5
DOIs
StatePublished - Jan 1 2001

Fingerprint

thermodynamics
fragments
exponents
momentum
cooling
nuclei
latent heat
nucleons
excitation
energy
projectiles
equations of state
specific heat
scaling
collisions
curves

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Scharenberg, R. P., Srivastava, B. K., Albergo, S., Bieser, F., Brady, F. P., Caccia, Z., ... Wolf, K. (2001). Comparison of 1A GeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation. Physical Review C - Nuclear Physics, 64(5), 546021-5460219. [054602]. https://doi.org/10.1103/PhysRevC.64.054602

Comparison of 1A GeV 197Au+C data with thermodynamics : The nature of the phase transition in nuclear multifragmentation. / Scharenberg, R. P.; Srivastava, B. K.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D. A.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Elliott, J. B.; Gilkes, M. L.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J. C.; Lindenstruth, V.; Lisa, M. A.; Matis, H. S.; McMahan, M.; McParland, C.; Müller, W. F.J.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romanski, J.; Romero, J. L.; Russo, G. V.; Sann, H.; Scott, A.; Shao, Y.; Symons, T. J.M.; Tincknell, M.; Tuvé, C.; Wang, S.; Warren, P.; Wieman, H. H.; Wienold, T.; Wolf, K.

In: Physical Review C - Nuclear Physics, Vol. 64, No. 5, 054602, 01.01.2001, p. 546021-5460219.

Research output: Contribution to journalArticle

Scharenberg, RP, Srivastava, BK, Albergo, S, Bieser, F, Brady, FP, Caccia, Z, Cebra, DA, Chacon, AD, Chance, JL, Choi, Y, Costa, S, Elliott, JB, Gilkes, ML, Hauger, JA, Hirsch, AS, Hjort, EL, Insolia, A, Justice, M, Keane, D, Kintner, JC, Lindenstruth, V, Lisa, MA, Matis, HS, McMahan, M, McParland, C, Müller, WFJ, Olson, DL, Partlan, MD, Porile, NT, Potenza, R, Rai, G, Rasmussen, J, Ritter, HG, Romanski, J, Romero, JL, Russo, GV, Sann, H, Scott, A, Shao, Y, Symons, TJM, Tincknell, M, Tuvé, C, Wang, S, Warren, P, Wieman, HH, Wienold, T & Wolf, K 2001, 'Comparison of 1A GeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation', Physical Review C - Nuclear Physics, vol. 64, no. 5, 054602, pp. 546021-5460219. https://doi.org/10.1103/PhysRevC.64.054602
Scharenberg, R. P. ; Srivastava, B. K. ; Albergo, S. ; Bieser, F. ; Brady, F. P. ; Caccia, Z. ; Cebra, D. A. ; Chacon, A. D. ; Chance, J. L. ; Choi, Y. ; Costa, S. ; Elliott, J. B. ; Gilkes, M. L. ; Hauger, J. A. ; Hirsch, A. S. ; Hjort, E. L. ; Insolia, A. ; Justice, M. ; Keane, D. ; Kintner, J. C. ; Lindenstruth, V. ; Lisa, M. A. ; Matis, H. S. ; McMahan, M. ; McParland, C. ; Müller, W. F.J. ; Olson, D. L. ; Partlan, M. D. ; Porile, N. T. ; Potenza, R. ; Rai, G. ; Rasmussen, J. ; Ritter, H. G. ; Romanski, J. ; Romero, J. L. ; Russo, G. V. ; Sann, H. ; Scott, A. ; Shao, Y. ; Symons, T. J.M. ; Tincknell, M. ; Tuvé, C. ; Wang, S. ; Warren, P. ; Wieman, H. H. ; Wienold, T. ; Wolf, K. / Comparison of 1A GeV 197Au+C data with thermodynamics : The nature of the phase transition in nuclear multifragmentation. In: Physical Review C - Nuclear Physics. 2001 ; Vol. 64, No. 5. pp. 546021-5460219.
@article{c508ea576523458fb9bf941f1342ad67,
title = "Comparison of 1A GeV 197Au+C data with thermodynamics: The nature of the phase transition in nuclear multifragmentation",
abstract = "Multifragmentation MF results from 1A GeV Au on C have been compared with the Copenhagen statistical multifragmentation model (SMM). The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity (energy) dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z≥3 are essentially unaffected when the excitation energy is ≤7 MeV/nucleon. SMM studies suggest that the experimental critical exponents are largely unaffected by cooling and event mixing. The nature of the phase transition in SMM is studied as a function of the remnant mass and charge using the microcanonical equation of state. For light remnants A ≤ 100, backbending is observed indicating negative specific heat, while for A ≥ 170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z ≤ 2 particles are primarily emitted in the initial collision and after MF in the fragment deexcitation process.",
author = "Scharenberg, {R. P.} and Srivastava, {B. K.} and S. Albergo and F. Bieser and Brady, {F. P.} and Z. Caccia and Cebra, {D. A.} and Chacon, {A. D.} and Chance, {J. L.} and Y. Choi and S. Costa and Elliott, {J. B.} and Gilkes, {M. L.} and Hauger, {J. A.} and Hirsch, {A. S.} and Hjort, {E. L.} and A. Insolia and M. Justice and D. Keane and Kintner, {J. C.} and V. Lindenstruth and Lisa, {M. A.} and Matis, {H. S.} and M. McMahan and C. McParland and M{\"u}ller, {W. F.J.} and Olson, {D. L.} and Partlan, {M. D.} and Porile, {N. T.} and R. Potenza and G. Rai and J. Rasmussen and Ritter, {H. G.} and J. Romanski and Romero, {J. L.} and Russo, {G. V.} and H. Sann and A. Scott and Y. Shao and Symons, {T. J.M.} and M. Tincknell and C. Tuv{\'e} and S. Wang and P. Warren and Wieman, {H. H.} and T. Wienold and K. Wolf",
year = "2001",
month = "1",
day = "1",
doi = "10.1103/PhysRevC.64.054602",
language = "English (US)",
volume = "64",
pages = "546021--5460219",
journal = "Physical Review C - Nuclear Physics",
issn = "0556-2813",
publisher = "American Physical Society",
number = "5",

}

TY - JOUR

T1 - Comparison of 1A GeV 197Au+C data with thermodynamics

T2 - The nature of the phase transition in nuclear multifragmentation

AU - Scharenberg, R. P.

AU - Srivastava, B. K.

AU - Albergo, S.

AU - Bieser, F.

AU - Brady, F. P.

AU - Caccia, Z.

AU - Cebra, D. A.

AU - Chacon, A. D.

AU - Chance, J. L.

AU - Choi, Y.

AU - Costa, S.

AU - Elliott, J. B.

AU - Gilkes, M. L.

AU - Hauger, J. A.

AU - Hirsch, A. S.

AU - Hjort, E. L.

AU - Insolia, A.

AU - Justice, M.

AU - Keane, D.

AU - Kintner, J. C.

AU - Lindenstruth, V.

AU - Lisa, M. A.

AU - Matis, H. S.

AU - McMahan, M.

AU - McParland, C.

AU - Müller, W. F.J.

AU - Olson, D. L.

AU - Partlan, M. D.

AU - Porile, N. T.

AU - Potenza, R.

AU - Rai, G.

AU - Rasmussen, J.

AU - Ritter, H. G.

AU - Romanski, J.

AU - Romero, J. L.

AU - Russo, G. V.

AU - Sann, H.

AU - Scott, A.

AU - Shao, Y.

AU - Symons, T. J.M.

AU - Tincknell, M.

AU - Tuvé, C.

AU - Wang, S.

AU - Warren, P.

AU - Wieman, H. H.

AU - Wienold, T.

AU - Wolf, K.

PY - 2001/1/1

Y1 - 2001/1/1

N2 - Multifragmentation MF results from 1A GeV Au on C have been compared with the Copenhagen statistical multifragmentation model (SMM). The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity (energy) dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z≥3 are essentially unaffected when the excitation energy is ≤7 MeV/nucleon. SMM studies suggest that the experimental critical exponents are largely unaffected by cooling and event mixing. The nature of the phase transition in SMM is studied as a function of the remnant mass and charge using the microcanonical equation of state. For light remnants A ≤ 100, backbending is observed indicating negative specific heat, while for A ≥ 170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z ≤ 2 particles are primarily emitted in the initial collision and after MF in the fragment deexcitation process.

AB - Multifragmentation MF results from 1A GeV Au on C have been compared with the Copenhagen statistical multifragmentation model (SMM). The complete charge, mass, and momentum reconstruction of the Au projectile was used to identify high momentum ejectiles leaving an excited remnant of mass A, charge Z, and excitation energy E* which subsequently multifragments. Measurement of the magnitude and multiplicity (energy) dependence of the initial free volume and the breakup volume determines the variable volume parametrization of SMM. Very good agreement is obtained using SMM with the standard values of the SMM parameters. A large number of observables, including the fragment charge yield distributions, fragment multiplicity distributions, caloric curve, critical exponents, and the critical scaling function are explored in this comparison. The two stage structure of SMM is used to determine the effect of cooling of the primary hot fragments. Average fragment yields with Z≥3 are essentially unaffected when the excitation energy is ≤7 MeV/nucleon. SMM studies suggest that the experimental critical exponents are largely unaffected by cooling and event mixing. The nature of the phase transition in SMM is studied as a function of the remnant mass and charge using the microcanonical equation of state. For light remnants A ≤ 100, backbending is observed indicating negative specific heat, while for A ≥ 170 the effective latent heat approaches zero. Thus for heavier systems this transition can be identified as a continuous thermal phase transition where a large nucleus breaks up into a number of smaller nuclei with only a minimal release of constituent nucleons. Z ≤ 2 particles are primarily emitted in the initial collision and after MF in the fragment deexcitation process.

UR - http://www.scopus.com/inward/record.url?scp=14344267362&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=14344267362&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.64.054602

DO - 10.1103/PhysRevC.64.054602

M3 - Article

VL - 64

SP - 546021

EP - 5460219

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 5

M1 - 054602

ER -