Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked

Tracy D. Bell, Gerald F. DiBona, Rachel Biemiller, Michael W Brands

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 ± 1 and 121 ± 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 ± 1.2 and 5.7 ± 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume295
Issue number5
DOIs
StatePublished - Nov 1 2008

Fingerprint

Renal Circulation
Nitric Oxide
NG-Nitroarginine Methyl Ester
Arterial Pressure
Kidney
Vasodilation
Homeostasis
Experimental Diabetes Mellitus
Renal Artery
Type 1 Diabetes Mellitus
Veins
Catheters
Arteries
Blood Pressure
Control Groups

Keywords

  • Autoregulation
  • Chronic animal models

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked. / Bell, Tracy D.; DiBona, Gerald F.; Biemiller, Rachel; Brands, Michael W.

In: American Journal of Physiology - Renal Physiology, Vol. 295, No. 5, 01.11.2008.

Research output: Contribution to journalArticle

@article{b5fdd0689c444fedafc3e610eda66cef,
title = "Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked",
abstract = "This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 ± 1 and 121 ± 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 ± 1.2 and 5.7 ± 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55{\%} above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.",
keywords = "Autoregulation, Chronic animal models",
author = "Bell, {Tracy D.} and DiBona, {Gerald F.} and Rachel Biemiller and Brands, {Michael W}",
year = "2008",
month = "11",
day = "1",
doi = "10.1152/ajprenal.00004.2008",
language = "English (US)",
volume = "295",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Continuously measured renal blood flow does not increase in diabetes if nitric oxide synthesis is blocked

AU - Bell, Tracy D.

AU - DiBona, Gerald F.

AU - Biemiller, Rachel

AU - Brands, Michael W

PY - 2008/11/1

Y1 - 2008/11/1

N2 - This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 ± 1 and 121 ± 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 ± 1.2 and 5.7 ± 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.

AB - This study used 16 h/day measurement of renal blood flow (RBF) and arterial pressure (AP) to determine the role of nitric oxide (NO) in mediating the renal vasodilation caused by onset of type 1 diabetes. The AP and RBF power spectra were used to determine the autoregulatory efficiency of the renal vasculature. Rats were instrumented with artery and vein catheters and a Transonic flow probe on the left renal artery and were divided randomly into four groups: control (C), diabetes (D), control plus nitro-L-arginine methyl ester (L-NAME; CL), and diabetes plus L-NAME (DL). Mean AP averaged 90 ± 1 and 121 ± 1 mmHg in the D and DL groups, respectively, during the control period, and RBF averaged 5.9 ± 1.2 and 5.7 ± 0.7 ml/min, respectively. Respective C and CL groups were not different. Onset of diabetes (streptozotocin 40 mg/kg iv) in D rats increased RBF gradually, but it averaged 55% above control by day 14. In DL rats, on the other hand, RBF remained essentially constant, tracking with RBF in the nondiabetic C and CL groups for the 2-wk period. Diabetes did not change mean AP in any group. Transfer function analysis revealed impaired dynamic autoregulation of RBF overall, including the frequency range of tubuloglomerular feedback (TGF), and L-NAME completely prevented those changes as well. These data strongly support a role for NO in causing renal vasodilation in diabetes and suggest that an effect of NO to blunt RBF autoregulation may play an important role.

KW - Autoregulation

KW - Chronic animal models

UR - http://www.scopus.com/inward/record.url?scp=57349169356&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57349169356&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00004.2008

DO - 10.1152/ajprenal.00004.2008

M3 - Article

C2 - 18753304

AN - SCOPUS:57349169356

VL - 295

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 5

ER -