Effect of α-domain substitution on the structure, property and function of human neuronal growth inhibitory factor

Zhi-Chun Ding, Qi Zheng, Bin Cai, Wen Hao Yu, Xin Chen Teng, Yang Wang, Guo Ming Zhou, Hou Ming Wu, Hong Zhe Sun, Ming Jie Zhang, Zhong Xian Huang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Human metallothionein-3 (hMT3), also named human neuronal growth inhibitory factor (hGIF), is attractive due to its distinct neuronal growth inhibitory activity, which is not shown by other human MT isoforms. It has been reported that the neuronal growth inhibitory activity arises from the N-terminal β-domain rather than its C-terminal α-domain. However, previous bioassay results have shown that the single β-domain is less effective at inhibiting the neuron growth than that in intact hMT3 on a molar basis, which suggests that the α-domain is indispensable to the neuronal growth inhibitory activity of hMT3. In order to confirm this assumption, we constructed two domain-hybrid mutants, the β(MT3)-β(MT3) mutant and the β(MT3)-α(MT1) mutant, and investigated their structural and metal binding properties by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, etc. The results showed that stability of the Cd 3S9 cluster of the β(MT3)-β(MT3) mutant decreased significantly while the Cd3S9 cluster of the β(MT3)-α(MT1) mutant had a similar stability and solvent accessibility to that of hMT3. Interestingly, the bioassay results showed that the neuronal growth inhibitory activity of the β(MT3)-β(MT3) mutant decreased significantly, while the β(MT3)-α(MT1) mutant showed similar inhibitory activity to hMT3. Based on these results, we conclude that the α-domain is indispensable and plays an important role in modulating the stability of the metal cluster in the β-domain by domain-domain interactions, thus influencing the bioactivity of hMT3.

Original languageEnglish (US)
Pages (from-to)1173-1179
Number of pages7
JournalJournal of Biological Inorganic Chemistry
Volume12
Issue number8
DOIs
StatePublished - Nov 2007

Keywords

  • Domain hybrid and cell culture
  • Human metallothionein-3
  • Human neuronal growth inhibitory factor
  • Mutants

ASJC Scopus subject areas

  • Biochemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Effect of α-domain substitution on the structure, property and function of human neuronal growth inhibitory factor'. Together they form a unique fingerprint.

Cite this