Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity

B. Chengat Prakashbabu, V. Thenmozhi, G. Limon, K. Kundu, S. Kumar, R. Garg, E. L. Clark, A. S.R. Srinivasa Rao, D. G. Raj, M. Raman, P. S. Banerjee, F. M. Tomley, J. Guitian, D. P. Blake

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control.

Original languageEnglish (US)
Pages (from-to)62-72
Number of pages11
JournalVeterinary Parasitology
Volume233
DOIs
StatePublished - Jan 15 2017

Fingerprint

Eimeria
poultry production
Poultry
production technology
Parasites
India
parasites
Eimeria tenella
farms
genetic variation
coccidiostats
poultry
population structure
risk factors
farm typology
Eimeria necatrix
poultry diseases
Population
Coccidiosis
subunit vaccines

Keywords

  • Chickens
  • Eimeria
  • Epidemiology
  • Genetic diversity

ASJC Scopus subject areas

  • Parasitology
  • veterinary(all)

Cite this

Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity. / Chengat Prakashbabu, B.; Thenmozhi, V.; Limon, G.; Kundu, K.; Kumar, S.; Garg, R.; Clark, E. L.; Srinivasa Rao, A. S.R.; Raj, D. G.; Raman, M.; Banerjee, P. S.; Tomley, F. M.; Guitian, J.; Blake, D. P.

In: Veterinary Parasitology, Vol. 233, 15.01.2017, p. 62-72.

Research output: Contribution to journalArticle

Chengat Prakashbabu, B, Thenmozhi, V, Limon, G, Kundu, K, Kumar, S, Garg, R, Clark, EL, Srinivasa Rao, ASR, Raj, DG, Raman, M, Banerjee, PS, Tomley, FM, Guitian, J & Blake, DP 2017, 'Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity', Veterinary Parasitology, vol. 233, pp. 62-72. https://doi.org/10.1016/j.vetpar.2016.12.003
Chengat Prakashbabu, B. ; Thenmozhi, V. ; Limon, G. ; Kundu, K. ; Kumar, S. ; Garg, R. ; Clark, E. L. ; Srinivasa Rao, A. S.R. ; Raj, D. G. ; Raman, M. ; Banerjee, P. S. ; Tomley, F. M. ; Guitian, J. ; Blake, D. P. / Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity. In: Veterinary Parasitology. 2017 ; Vol. 233. pp. 62-72.
@article{dac6efc7a2594761a12d578f5d22bb3e,
title = "Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity",
abstract = "Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control.",
keywords = "Chickens, Eimeria, Epidemiology, Genetic diversity",
author = "{Chengat Prakashbabu}, B. and V. Thenmozhi and G. Limon and K. Kundu and S. Kumar and R. Garg and Clark, {E. L.} and {Srinivasa Rao}, {A. S.R.} and Raj, {D. G.} and M. Raman and Banerjee, {P. S.} and Tomley, {F. M.} and J. Guitian and Blake, {D. P.}",
year = "2017",
month = "1",
day = "15",
doi = "10.1016/j.vetpar.2016.12.003",
language = "English (US)",
volume = "233",
pages = "62--72",
journal = "Veterinary Parasitology: Regional Studies and Reports",
issn = "0304-4017",
publisher = "Elsevier",

}

TY - JOUR

T1 - Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity

AU - Chengat Prakashbabu, B.

AU - Thenmozhi, V.

AU - Limon, G.

AU - Kundu, K.

AU - Kumar, S.

AU - Garg, R.

AU - Clark, E. L.

AU - Srinivasa Rao, A. S.R.

AU - Raj, D. G.

AU - Raman, M.

AU - Banerjee, P. S.

AU - Tomley, F. M.

AU - Guitian, J.

AU - Blake, D. P.

PY - 2017/1/15

Y1 - 2017/1/15

N2 - Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control.

AB - Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and system-specific distribution may contribute to the different levels of genetic diversity observed previously in India and may influence parasite population structure across much of Asia and Africa. The findings of the study can be used to prioritise target farms to launch and optimise appropriate anticoccidial strategies for long-term control.

KW - Chickens

KW - Eimeria

KW - Epidemiology

KW - Genetic diversity

UR - http://www.scopus.com/inward/record.url?scp=85007193587&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007193587&partnerID=8YFLogxK

U2 - 10.1016/j.vetpar.2016.12.003

DO - 10.1016/j.vetpar.2016.12.003

M3 - Article

C2 - 28043390

AN - SCOPUS:85007193587

VL - 233

SP - 62

EP - 72

JO - Veterinary Parasitology: Regional Studies and Reports

JF - Veterinary Parasitology: Regional Studies and Reports

SN - 0304-4017

ER -