Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms

Kathryn M. Spitler, R Clinton Webb

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Vascular smooth muscle cell apoptosis and collagen synthesis contribute to aortic stiffening. A cellular signaling mechanism contributing to apoptotic and fibrotic events is endoplasmic reticulum (ER) stress. In this study, we tested the hypothesis that induction of ER stress in a normotensive rat would cause profibrotic and apoptotic signaling, thereby contributing to aortic stiffening. Furthermore, we hypothesized that inhibition of ER stress in an angiotensin II (Ang II) model of hypertension would improve aortic stiffening. Induction of ER stress with tunicamycin in normotensive Sprague-Dawley rats (10 μg/kg per day, osmotic pump, 28 days) caused an increase in systolic blood pressure (mm Hg; 160±5) compared with vehicle-treated (127±3) or tunicamycin-treated rats that were cotreated with ER stress inhibitor 4-phenylbutyric acid (100 mg/kg per day, 28 days, [124±6]). There was an increase in aortic apoptosis (fold; 3.0±0.3), collagen content (1.4±0.1), and fibrosis (2.0±0.1) in the tunicamycin-treated rats compared with vehicle-treated rats. Inhibition of ER stress in male Sprague-Dawley rats given Ang II (60 ng/min, osmotic pump, 28 days) and treated with either tauroursodeoxycholic acid or phenylbutyric acid (100 mg/kg per day, IP, 28 days) led to a 20 mm Hg decrease in blood pressure with either inhibitor compared with Ang II treatment alone. Aortic apoptosis, increased collagen content, and fibrosis in Ang II-treated rats were attenuated with ER stress inhibition. We conclude that ER stress is a new signaling mechanism that contributes to aortic stiffening via promoting apoptosis and fibrosis.

Original languageEnglish (US)
JournalHypertension
Volume63
Issue number3
DOIs
StatePublished - Mar 1 2014

Fingerprint

Endoplasmic Reticulum Stress
Tunicamycin
Angiotensin II
Apoptosis
Fibrosis
Collagen
Blood Pressure
Sprague Dawley Rats
Vascular Smooth Muscle
Smooth Muscle Myocytes
Hypertension
Acids

Keywords

  • apoptosis
  • fibrosis
  • muscle, smooth, vascular
  • vascular stiffness

ASJC Scopus subject areas

  • Internal Medicine

Cite this

Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms. / Spitler, Kathryn M.; Webb, R Clinton.

In: Hypertension, Vol. 63, No. 3, 01.03.2014.

Research output: Contribution to journalArticle

@article{6c859202ddf74e639dd8e79fdbc88539,
title = "Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms",
abstract = "Vascular smooth muscle cell apoptosis and collagen synthesis contribute to aortic stiffening. A cellular signaling mechanism contributing to apoptotic and fibrotic events is endoplasmic reticulum (ER) stress. In this study, we tested the hypothesis that induction of ER stress in a normotensive rat would cause profibrotic and apoptotic signaling, thereby contributing to aortic stiffening. Furthermore, we hypothesized that inhibition of ER stress in an angiotensin II (Ang II) model of hypertension would improve aortic stiffening. Induction of ER stress with tunicamycin in normotensive Sprague-Dawley rats (10 μg/kg per day, osmotic pump, 28 days) caused an increase in systolic blood pressure (mm Hg; 160±5) compared with vehicle-treated (127±3) or tunicamycin-treated rats that were cotreated with ER stress inhibitor 4-phenylbutyric acid (100 mg/kg per day, 28 days, [124±6]). There was an increase in aortic apoptosis (fold; 3.0±0.3), collagen content (1.4±0.1), and fibrosis (2.0±0.1) in the tunicamycin-treated rats compared with vehicle-treated rats. Inhibition of ER stress in male Sprague-Dawley rats given Ang II (60 ng/min, osmotic pump, 28 days) and treated with either tauroursodeoxycholic acid or phenylbutyric acid (100 mg/kg per day, IP, 28 days) led to a 20 mm Hg decrease in blood pressure with either inhibitor compared with Ang II treatment alone. Aortic apoptosis, increased collagen content, and fibrosis in Ang II-treated rats were attenuated with ER stress inhibition. We conclude that ER stress is a new signaling mechanism that contributes to aortic stiffening via promoting apoptosis and fibrosis.",
keywords = "apoptosis, fibrosis, muscle, smooth, vascular, vascular stiffness",
author = "Spitler, {Kathryn M.} and Webb, {R Clinton}",
year = "2014",
month = "3",
day = "1",
doi = "10.1161/HYPERTENSIONAHA.113.02558",
language = "English (US)",
volume = "63",
journal = "Hypertension",
issn = "0194-911X",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

TY - JOUR

T1 - Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms

AU - Spitler, Kathryn M.

AU - Webb, R Clinton

PY - 2014/3/1

Y1 - 2014/3/1

N2 - Vascular smooth muscle cell apoptosis and collagen synthesis contribute to aortic stiffening. A cellular signaling mechanism contributing to apoptotic and fibrotic events is endoplasmic reticulum (ER) stress. In this study, we tested the hypothesis that induction of ER stress in a normotensive rat would cause profibrotic and apoptotic signaling, thereby contributing to aortic stiffening. Furthermore, we hypothesized that inhibition of ER stress in an angiotensin II (Ang II) model of hypertension would improve aortic stiffening. Induction of ER stress with tunicamycin in normotensive Sprague-Dawley rats (10 μg/kg per day, osmotic pump, 28 days) caused an increase in systolic blood pressure (mm Hg; 160±5) compared with vehicle-treated (127±3) or tunicamycin-treated rats that were cotreated with ER stress inhibitor 4-phenylbutyric acid (100 mg/kg per day, 28 days, [124±6]). There was an increase in aortic apoptosis (fold; 3.0±0.3), collagen content (1.4±0.1), and fibrosis (2.0±0.1) in the tunicamycin-treated rats compared with vehicle-treated rats. Inhibition of ER stress in male Sprague-Dawley rats given Ang II (60 ng/min, osmotic pump, 28 days) and treated with either tauroursodeoxycholic acid or phenylbutyric acid (100 mg/kg per day, IP, 28 days) led to a 20 mm Hg decrease in blood pressure with either inhibitor compared with Ang II treatment alone. Aortic apoptosis, increased collagen content, and fibrosis in Ang II-treated rats were attenuated with ER stress inhibition. We conclude that ER stress is a new signaling mechanism that contributes to aortic stiffening via promoting apoptosis and fibrosis.

AB - Vascular smooth muscle cell apoptosis and collagen synthesis contribute to aortic stiffening. A cellular signaling mechanism contributing to apoptotic and fibrotic events is endoplasmic reticulum (ER) stress. In this study, we tested the hypothesis that induction of ER stress in a normotensive rat would cause profibrotic and apoptotic signaling, thereby contributing to aortic stiffening. Furthermore, we hypothesized that inhibition of ER stress in an angiotensin II (Ang II) model of hypertension would improve aortic stiffening. Induction of ER stress with tunicamycin in normotensive Sprague-Dawley rats (10 μg/kg per day, osmotic pump, 28 days) caused an increase in systolic blood pressure (mm Hg; 160±5) compared with vehicle-treated (127±3) or tunicamycin-treated rats that were cotreated with ER stress inhibitor 4-phenylbutyric acid (100 mg/kg per day, 28 days, [124±6]). There was an increase in aortic apoptosis (fold; 3.0±0.3), collagen content (1.4±0.1), and fibrosis (2.0±0.1) in the tunicamycin-treated rats compared with vehicle-treated rats. Inhibition of ER stress in male Sprague-Dawley rats given Ang II (60 ng/min, osmotic pump, 28 days) and treated with either tauroursodeoxycholic acid or phenylbutyric acid (100 mg/kg per day, IP, 28 days) led to a 20 mm Hg decrease in blood pressure with either inhibitor compared with Ang II treatment alone. Aortic apoptosis, increased collagen content, and fibrosis in Ang II-treated rats were attenuated with ER stress inhibition. We conclude that ER stress is a new signaling mechanism that contributes to aortic stiffening via promoting apoptosis and fibrosis.

KW - apoptosis

KW - fibrosis

KW - muscle, smooth, vascular

KW - vascular stiffness

UR - http://www.scopus.com/inward/record.url?scp=84894476044&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84894476044&partnerID=8YFLogxK

U2 - 10.1161/HYPERTENSIONAHA.113.02558

DO - 10.1161/HYPERTENSIONAHA.113.02558

M3 - Article

VL - 63

JO - Hypertension

JF - Hypertension

SN - 0194-911X

IS - 3

ER -