Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The steroid hormone, 17β-estradiol (E2) has been reported to enhance executive functions that are known to be mediated by the prefrontal cortex (PFC), although the underlying mechanisms remain unclear. To shed light on the potential mechanisms, we examined the effect of E2 in vivo upon spine density in the rat PFC and the somatosensory cortex (SSC), which has been implicated to be a transient storage site for information that can also contribute to working memory. The results revealed that E2 significantly enhanced the number of dendritic spines in both the SSC and PFC, as well as the expression of spinophilin. In vitro studies revealed further mechanistic insights by demonstrating that E2 enhanced AMPA GluR1 receptor expression and excitatory glutamatergic synapse formation in rat cortical neurons, without an effect upon inhibitory GABAergic synapse formation. Furthermore, E2 rapidly enhanced ERK and Akt activation in cortical neurons, and inhibitors of ERK and Akt activation significantly attenuated E2 induction of excitatory glutamatergic synapses. Administration of E2-BSA likewise significantly enhanced excitatory glutamatergic synapses in cortical neurons, and administration of an ER antagonist, ICI182,780 and a non-NMDA receptor antagonist (NBQX) significantly attenuated the effect of E2 upon enhancement of excitatory glutamatergic synapses, suggesting mediation by extranuclear estrogen receptors and involvement of non-NMDA receptor activation and signaling. As a whole, the studies demonstrate that E2 enhances spine density in both the PFC and SSC, and that E2 enhances excitatory glutamatergic synapse formation in cortical neurons via a rapid extranuclear ER-mediated signaling mechanism that involves up-regulation of GluR1 and mediation by Akt and ERK signaling pathways.

Original languageEnglish (US)
Pages (from-to)614-623
Number of pages10
JournalSteroids
Volume78
Issue number6
DOIs
StatePublished - Jun 1 2013

Fingerprint

Somatosensory Cortex
Cerebral Cortex
Synapses
Neurons
Rats
Estrogens
Spine
Prefrontal Cortex
Chemical activation
Steroid hormones
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
Estrogen Receptors
Estradiol
Dendritic Spines
AMPA Receptors
MAP Kinase Signaling System
Information Storage and Retrieval
Executive Function
Short-Term Memory
Data storage equipment

Keywords

  • Estradiol
  • Kinase
  • Nongenomic
  • Synapse
  • Synaptic plasticity

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Endocrinology
  • Pharmacology
  • Clinical Biochemistry
  • Organic Chemistry

Cite this

@article{20d3d2b435ef43a1ab3706d9d208674c,
title = "Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex",
abstract = "The steroid hormone, 17β-estradiol (E2) has been reported to enhance executive functions that are known to be mediated by the prefrontal cortex (PFC), although the underlying mechanisms remain unclear. To shed light on the potential mechanisms, we examined the effect of E2 in vivo upon spine density in the rat PFC and the somatosensory cortex (SSC), which has been implicated to be a transient storage site for information that can also contribute to working memory. The results revealed that E2 significantly enhanced the number of dendritic spines in both the SSC and PFC, as well as the expression of spinophilin. In vitro studies revealed further mechanistic insights by demonstrating that E2 enhanced AMPA GluR1 receptor expression and excitatory glutamatergic synapse formation in rat cortical neurons, without an effect upon inhibitory GABAergic synapse formation. Furthermore, E2 rapidly enhanced ERK and Akt activation in cortical neurons, and inhibitors of ERK and Akt activation significantly attenuated E2 induction of excitatory glutamatergic synapses. Administration of E2-BSA likewise significantly enhanced excitatory glutamatergic synapses in cortical neurons, and administration of an ER antagonist, ICI182,780 and a non-NMDA receptor antagonist (NBQX) significantly attenuated the effect of E2 upon enhancement of excitatory glutamatergic synapses, suggesting mediation by extranuclear estrogen receptors and involvement of non-NMDA receptor activation and signaling. As a whole, the studies demonstrate that E2 enhances spine density in both the PFC and SSC, and that E2 enhances excitatory glutamatergic synapse formation in cortical neurons via a rapid extranuclear ER-mediated signaling mechanism that involves up-regulation of GluR1 and mediation by Akt and ERK signaling pathways.",
keywords = "Estradiol, Kinase, Nongenomic, Synapse, Synaptic plasticity",
author = "Khan, {Mohammad M.} and Dhandapani, {Krishnan Michael} and Quanguang Zhang and Brann, {Darrell W}",
year = "2013",
month = "6",
day = "1",
doi = "10.1016/j.steroids.2012.12.005",
language = "English (US)",
volume = "78",
pages = "614--623",
journal = "Steroids",
issn = "0039-128X",
publisher = "Elsevier Inc.",
number = "6",

}

TY - JOUR

T1 - Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex

AU - Khan, Mohammad M.

AU - Dhandapani, Krishnan Michael

AU - Zhang, Quanguang

AU - Brann, Darrell W

PY - 2013/6/1

Y1 - 2013/6/1

N2 - The steroid hormone, 17β-estradiol (E2) has been reported to enhance executive functions that are known to be mediated by the prefrontal cortex (PFC), although the underlying mechanisms remain unclear. To shed light on the potential mechanisms, we examined the effect of E2 in vivo upon spine density in the rat PFC and the somatosensory cortex (SSC), which has been implicated to be a transient storage site for information that can also contribute to working memory. The results revealed that E2 significantly enhanced the number of dendritic spines in both the SSC and PFC, as well as the expression of spinophilin. In vitro studies revealed further mechanistic insights by demonstrating that E2 enhanced AMPA GluR1 receptor expression and excitatory glutamatergic synapse formation in rat cortical neurons, without an effect upon inhibitory GABAergic synapse formation. Furthermore, E2 rapidly enhanced ERK and Akt activation in cortical neurons, and inhibitors of ERK and Akt activation significantly attenuated E2 induction of excitatory glutamatergic synapses. Administration of E2-BSA likewise significantly enhanced excitatory glutamatergic synapses in cortical neurons, and administration of an ER antagonist, ICI182,780 and a non-NMDA receptor antagonist (NBQX) significantly attenuated the effect of E2 upon enhancement of excitatory glutamatergic synapses, suggesting mediation by extranuclear estrogen receptors and involvement of non-NMDA receptor activation and signaling. As a whole, the studies demonstrate that E2 enhances spine density in both the PFC and SSC, and that E2 enhances excitatory glutamatergic synapse formation in cortical neurons via a rapid extranuclear ER-mediated signaling mechanism that involves up-regulation of GluR1 and mediation by Akt and ERK signaling pathways.

AB - The steroid hormone, 17β-estradiol (E2) has been reported to enhance executive functions that are known to be mediated by the prefrontal cortex (PFC), although the underlying mechanisms remain unclear. To shed light on the potential mechanisms, we examined the effect of E2 in vivo upon spine density in the rat PFC and the somatosensory cortex (SSC), which has been implicated to be a transient storage site for information that can also contribute to working memory. The results revealed that E2 significantly enhanced the number of dendritic spines in both the SSC and PFC, as well as the expression of spinophilin. In vitro studies revealed further mechanistic insights by demonstrating that E2 enhanced AMPA GluR1 receptor expression and excitatory glutamatergic synapse formation in rat cortical neurons, without an effect upon inhibitory GABAergic synapse formation. Furthermore, E2 rapidly enhanced ERK and Akt activation in cortical neurons, and inhibitors of ERK and Akt activation significantly attenuated E2 induction of excitatory glutamatergic synapses. Administration of E2-BSA likewise significantly enhanced excitatory glutamatergic synapses in cortical neurons, and administration of an ER antagonist, ICI182,780 and a non-NMDA receptor antagonist (NBQX) significantly attenuated the effect of E2 upon enhancement of excitatory glutamatergic synapses, suggesting mediation by extranuclear estrogen receptors and involvement of non-NMDA receptor activation and signaling. As a whole, the studies demonstrate that E2 enhances spine density in both the PFC and SSC, and that E2 enhances excitatory glutamatergic synapse formation in cortical neurons via a rapid extranuclear ER-mediated signaling mechanism that involves up-regulation of GluR1 and mediation by Akt and ERK signaling pathways.

KW - Estradiol

KW - Kinase

KW - Nongenomic

KW - Synapse

KW - Synaptic plasticity

UR - http://www.scopus.com/inward/record.url?scp=84876675798&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84876675798&partnerID=8YFLogxK

U2 - 10.1016/j.steroids.2012.12.005

DO - 10.1016/j.steroids.2012.12.005

M3 - Article

VL - 78

SP - 614

EP - 623

JO - Steroids

JF - Steroids

SN - 0039-128X

IS - 6

ER -