Flow and multifragmentation in nuclear collisions at intermediate energies

H. G. Ritter, S. Albergo, F. Bieser, F. P. Brady, Z. Caccia, A. D. Chacon, J. L. Chance, Y. Choi, S. Costa, J. B. Elliott, M. L. Gilkes, J. A. Hauger, A. S. Hirsch, E. L. Hjort, A. Insolia, M. Justice, D. Keane, J. Kintner, V. Lindenstruth, M. A. LisaU. Lynen, H. S. Matis, M. McMahan, C. McParland, W. E.J. Mueller, D. L. Olson, M. D. Partlan, N. T. Porile, R. Potenza, G. Rai, J. Rasmussen, J. Romanski, J. L. Romero, G. V. Russo, H. Sann, R. P. Scharenberg, A. Scott, Y. Shao, B. K. Srivastava, T. J.M. Symons, M. L. Tincknell, C. Tuvè, S. Wang, P. G. Warren, H. H. Wieman, K. L. Wolf

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Energy spectra of hydrogen and helium isotopes emitted in Au+Au collisions at 0.25, 0.40, 0.60, 0.80, 1.0, and 1.15A GeV have been measured. A systematic study of the shapes of the spectra reveals a significant non-thermal component consistent with collective radial flow. The strength of this component is evaluated as a function of bombarding energy. Comparisons of the flow signal to predictions of QMD and BUU models are made. Using reverse kinematics, the breakup of gold nuclei has been studied in Au+C reactions at 1.0A GeV. The moments of the resulting charged fragment distribution provide evidence that nuclear matter possesses a critical point observable in finite nuclei. Values for the critical exponents γ, β, and τ have been determined. These values are close to those for liquid-gas systems and different from those for 3D percolation.

Original languageEnglish (US)
Pages (from-to)491-498
Number of pages8
JournalNuclear Physics, Section A
Issue numberC
StatePublished - Feb 6 1995
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Flow and multifragmentation in nuclear collisions at intermediate energies'. Together they form a unique fingerprint.

Cite this