Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs

Scott A Barman, L. L. McCloud, J. D. Calravas, I. C. Ehrhart

Research output: Contribution to journalArticle

Abstract

Regional heterogeneity of lung blood flow is measured by analyzing the relative dispersion (RD) of mass (weight)-flow data. Pulmonary blood flow is fractal in nature and can be characterized by the fractal dimension (D) and RD for the smallest realizable volume element (piece size) termed RDref. Although information exists for the applicability of fractal analysis to pulmonary blood flow in whole animal models, little is known in isolated organs. Four different radiolabeled microspheres (141Ce, 95Nb, 85Sr, 51 Cr; 15μ were injected into the pulmonary lobar artery of isolated canine lungs (n=5) perfused at four flow rates (Flow 1 - 0.42 ±0.02 L/min; Flow 2 = 1.12±0.07 L/min; Flow 3 = 2.25±0.17 L/min; Flow 4 = 2.59±0.17 L/min) and the pulmonary blood flow distribution was measured. Results indicate that under normal blood flow (Flow 1) conditions, all regions of horizontally perfused isolated lungs received blood flow that was preferentially distributed to the most caudal regions of the lung. Regional pulmonary blood flow was heterogeneous and fractal in nature as measured by RD. As flow rates increased, D values remained constant while RD decreased, reflecting more homogeneous blood flow distribution. At any given blood flow rate, high flow areas of the lung received a proportionally larger amount of regional flow suggesting that the degree of pulmonary vascular recruitment may also be region specific. Supported by NIH HI.-47926, HL-45025. HL-31422, and the AHAGeorgia Affiliate, Inc.

Original languageEnglish (US)
JournalFASEB Journal
Volume10
Issue number3
StatePublished - Dec 1 1996

Fingerprint

Fractals
blood flow
Canidae
Blood
lungs
Lung
dogs
Flow rate
Fractal dimension
Microspheres
Regional Blood Flow
fractal dimensions
Pulmonary Artery
Animals
blood vessels
Blood Vessels
arteries
Animal Models
animal models
Weights and Measures

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Cite this

Barman, S. A., McCloud, L. L., Calravas, J. D., & Ehrhart, I. C. (1996). Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs. FASEB Journal, 10(3).

Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs. / Barman, Scott A; McCloud, L. L.; Calravas, J. D.; Ehrhart, I. C.

In: FASEB Journal, Vol. 10, No. 3, 01.12.1996.

Research output: Contribution to journalArticle

Barman, SA, McCloud, LL, Calravas, JD & Ehrhart, IC 1996, 'Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs', FASEB Journal, vol. 10, no. 3.
Barman, Scott A ; McCloud, L. L. ; Calravas, J. D. ; Ehrhart, I. C. / Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs. In: FASEB Journal. 1996 ; Vol. 10, No. 3.
@article{a9fa6e02c0bc45a3bb846e0d72dd4999,
title = "Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs",
abstract = "Regional heterogeneity of lung blood flow is measured by analyzing the relative dispersion (RD) of mass (weight)-flow data. Pulmonary blood flow is fractal in nature and can be characterized by the fractal dimension (D) and RD for the smallest realizable volume element (piece size) termed RDref. Although information exists for the applicability of fractal analysis to pulmonary blood flow in whole animal models, little is known in isolated organs. Four different radiolabeled microspheres (141Ce, 95Nb, 85Sr, 51 Cr; 15μ were injected into the pulmonary lobar artery of isolated canine lungs (n=5) perfused at four flow rates (Flow 1 - 0.42 ±0.02 L/min; Flow 2 = 1.12±0.07 L/min; Flow 3 = 2.25±0.17 L/min; Flow 4 = 2.59±0.17 L/min) and the pulmonary blood flow distribution was measured. Results indicate that under normal blood flow (Flow 1) conditions, all regions of horizontally perfused isolated lungs received blood flow that was preferentially distributed to the most caudal regions of the lung. Regional pulmonary blood flow was heterogeneous and fractal in nature as measured by RD. As flow rates increased, D values remained constant while RD decreased, reflecting more homogeneous blood flow distribution. At any given blood flow rate, high flow areas of the lung received a proportionally larger amount of regional flow suggesting that the degree of pulmonary vascular recruitment may also be region specific. Supported by NIH HI.-47926, HL-45025. HL-31422, and the AHAGeorgia Affiliate, Inc.",
author = "Barman, {Scott A} and McCloud, {L. L.} and Calravas, {J. D.} and Ehrhart, {I. C.}",
year = "1996",
month = "12",
day = "1",
language = "English (US)",
volume = "10",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "3",

}

TY - JOUR

T1 - Fractal analysis of pulmonary blood flow heterogeneity in isolated canine lungs

AU - Barman, Scott A

AU - McCloud, L. L.

AU - Calravas, J. D.

AU - Ehrhart, I. C.

PY - 1996/12/1

Y1 - 1996/12/1

N2 - Regional heterogeneity of lung blood flow is measured by analyzing the relative dispersion (RD) of mass (weight)-flow data. Pulmonary blood flow is fractal in nature and can be characterized by the fractal dimension (D) and RD for the smallest realizable volume element (piece size) termed RDref. Although information exists for the applicability of fractal analysis to pulmonary blood flow in whole animal models, little is known in isolated organs. Four different radiolabeled microspheres (141Ce, 95Nb, 85Sr, 51 Cr; 15μ were injected into the pulmonary lobar artery of isolated canine lungs (n=5) perfused at four flow rates (Flow 1 - 0.42 ±0.02 L/min; Flow 2 = 1.12±0.07 L/min; Flow 3 = 2.25±0.17 L/min; Flow 4 = 2.59±0.17 L/min) and the pulmonary blood flow distribution was measured. Results indicate that under normal blood flow (Flow 1) conditions, all regions of horizontally perfused isolated lungs received blood flow that was preferentially distributed to the most caudal regions of the lung. Regional pulmonary blood flow was heterogeneous and fractal in nature as measured by RD. As flow rates increased, D values remained constant while RD decreased, reflecting more homogeneous blood flow distribution. At any given blood flow rate, high flow areas of the lung received a proportionally larger amount of regional flow suggesting that the degree of pulmonary vascular recruitment may also be region specific. Supported by NIH HI.-47926, HL-45025. HL-31422, and the AHAGeorgia Affiliate, Inc.

AB - Regional heterogeneity of lung blood flow is measured by analyzing the relative dispersion (RD) of mass (weight)-flow data. Pulmonary blood flow is fractal in nature and can be characterized by the fractal dimension (D) and RD for the smallest realizable volume element (piece size) termed RDref. Although information exists for the applicability of fractal analysis to pulmonary blood flow in whole animal models, little is known in isolated organs. Four different radiolabeled microspheres (141Ce, 95Nb, 85Sr, 51 Cr; 15μ were injected into the pulmonary lobar artery of isolated canine lungs (n=5) perfused at four flow rates (Flow 1 - 0.42 ±0.02 L/min; Flow 2 = 1.12±0.07 L/min; Flow 3 = 2.25±0.17 L/min; Flow 4 = 2.59±0.17 L/min) and the pulmonary blood flow distribution was measured. Results indicate that under normal blood flow (Flow 1) conditions, all regions of horizontally perfused isolated lungs received blood flow that was preferentially distributed to the most caudal regions of the lung. Regional pulmonary blood flow was heterogeneous and fractal in nature as measured by RD. As flow rates increased, D values remained constant while RD decreased, reflecting more homogeneous blood flow distribution. At any given blood flow rate, high flow areas of the lung received a proportionally larger amount of regional flow suggesting that the degree of pulmonary vascular recruitment may also be region specific. Supported by NIH HI.-47926, HL-45025. HL-31422, and the AHAGeorgia Affiliate, Inc.

UR - http://www.scopus.com/inward/record.url?scp=33748967572&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748967572&partnerID=8YFLogxK

M3 - Article

VL - 10

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 3

ER -