Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10

Rama R. Varma, Suzanne M. Hector, Kimberly Clark, William R. Greco, Lesleyann Hawthorn, Lakshmi Pendyala

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

The efficacy of platinum drugs in the treatment of cancer is often restricted by the acquisition of tumor cell resistance subsequent to treatment. To better understand mechanisms involved in this phenomenon, a clonal subline (A2780/C10B) isolated from an oxaliplatin-resistant human ovarian carcinoma cell line (A2780/C10) was developed, as reported previously. This cell line is 18-fold resistant to oxaliplatin and shows a 3-fold cross resistance to cisplatin. Here, we report on the gene expression analysis using Affymetrix HG-U95Av2 oligonucleotide arrays of cells in log phase growth from both the parental cell line and drug-resistant variant. Probe level analysis was perfomed using the model based expression index (dChip) and robust multichip average (RMA) methods. Genes that were differentially expressed between the two groups were identified using the significance analysis of microarrays (SAM) method with a minimum false discovery rate <1%. We identified 43 genes that were overexpressed, and 39 underexpressed in the drug-resistant cell line. Collagen VI (COL6A3) was overexpressed 62-fold and the most highly up-regulated gene. This finding is consistent with other published data based on serial analysis of gene expression (SAGE) profiling of cisplatin-resistant and sensitive ovarian carcinoma cells. Among the significant functional groups of overexpressed genes in our study were extracellular matrix genes (9 of 43) and those involved in signal transduction (7 of 43). Extracellular matrix genes included two matrix metalloproteinases (MMP3 and MMP12). Integrin α 1 (ITGA1) and WNT5A were also overexpressed. Genes that encode for extracellular matrix proteins were also among those found down-regulated in the resistant cell line. Several genes involved in the regulation of cell cycle and growth were found to be underexpressed, including the suppressor of cytokine signaling 2 (SOCS2), necdin (NDN), and glypicans (GPC3 and GPC4). The mRNA levels of six differentially expressed genes (COL6A3, MMP12, MMP3, WNT5A, NID, and HMGB2) were validated using real-time quantitative RT-PCR. The identification of these genes should aid in a better understanding of the pathways resulting in platinum drug resistance.

Original languageEnglish (US)
Pages (from-to)925-932
Number of pages8
JournalOncology Reports
Volume14
Issue number4
StatePublished - Oct 1 2005
Externally publishedYes

Fingerprint

oxaliplatin
Gene Expression Profiling
Carcinoma
Cell Line
Genes
Platinum
Cisplatin
Extracellular Matrix
HMGB2 Protein
Glypicans
Pharmaceutical Preparations

Keywords

  • Affymetrix
  • Gene expression
  • Oxaliplatin
  • Resistance

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Varma, R. R., Hector, S. M., Clark, K., Greco, W. R., Hawthorn, L., & Pendyala, L. (2005). Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10. Oncology Reports, 14(4), 925-932.

Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10. / Varma, Rama R.; Hector, Suzanne M.; Clark, Kimberly; Greco, William R.; Hawthorn, Lesleyann; Pendyala, Lakshmi.

In: Oncology Reports, Vol. 14, No. 4, 01.10.2005, p. 925-932.

Research output: Contribution to journalArticle

Varma, RR, Hector, SM, Clark, K, Greco, WR, Hawthorn, L & Pendyala, L 2005, 'Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10', Oncology Reports, vol. 14, no. 4, pp. 925-932.
Varma, Rama R. ; Hector, Suzanne M. ; Clark, Kimberly ; Greco, William R. ; Hawthorn, Lesleyann ; Pendyala, Lakshmi. / Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10. In: Oncology Reports. 2005 ; Vol. 14, No. 4. pp. 925-932.
@article{541f969950724c29acb38e4a4f2fb730,
title = "Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10",
abstract = "The efficacy of platinum drugs in the treatment of cancer is often restricted by the acquisition of tumor cell resistance subsequent to treatment. To better understand mechanisms involved in this phenomenon, a clonal subline (A2780/C10B) isolated from an oxaliplatin-resistant human ovarian carcinoma cell line (A2780/C10) was developed, as reported previously. This cell line is 18-fold resistant to oxaliplatin and shows a 3-fold cross resistance to cisplatin. Here, we report on the gene expression analysis using Affymetrix HG-U95Av2 oligonucleotide arrays of cells in log phase growth from both the parental cell line and drug-resistant variant. Probe level analysis was perfomed using the model based expression index (dChip) and robust multichip average (RMA) methods. Genes that were differentially expressed between the two groups were identified using the significance analysis of microarrays (SAM) method with a minimum false discovery rate <1{\%}. We identified 43 genes that were overexpressed, and 39 underexpressed in the drug-resistant cell line. Collagen VI (COL6A3) was overexpressed 62-fold and the most highly up-regulated gene. This finding is consistent with other published data based on serial analysis of gene expression (SAGE) profiling of cisplatin-resistant and sensitive ovarian carcinoma cells. Among the significant functional groups of overexpressed genes in our study were extracellular matrix genes (9 of 43) and those involved in signal transduction (7 of 43). Extracellular matrix genes included two matrix metalloproteinases (MMP3 and MMP12). Integrin α 1 (ITGA1) and WNT5A were also overexpressed. Genes that encode for extracellular matrix proteins were also among those found down-regulated in the resistant cell line. Several genes involved in the regulation of cell cycle and growth were found to be underexpressed, including the suppressor of cytokine signaling 2 (SOCS2), necdin (NDN), and glypicans (GPC3 and GPC4). The mRNA levels of six differentially expressed genes (COL6A3, MMP12, MMP3, WNT5A, NID, and HMGB2) were validated using real-time quantitative RT-PCR. The identification of these genes should aid in a better understanding of the pathways resulting in platinum drug resistance.",
keywords = "Affymetrix, Gene expression, Oxaliplatin, Resistance",
author = "Varma, {Rama R.} and Hector, {Suzanne M.} and Kimberly Clark and Greco, {William R.} and Lesleyann Hawthorn and Lakshmi Pendyala",
year = "2005",
month = "10",
day = "1",
language = "English (US)",
volume = "14",
pages = "925--932",
journal = "Oncology Reports",
issn = "1021-335X",
publisher = "Spandidos Publications",
number = "4",

}

TY - JOUR

T1 - Gene expression profiling of a clonal isolate of oxaliplatin resistant ovarian carcinoma cell line A2780/C10

AU - Varma, Rama R.

AU - Hector, Suzanne M.

AU - Clark, Kimberly

AU - Greco, William R.

AU - Hawthorn, Lesleyann

AU - Pendyala, Lakshmi

PY - 2005/10/1

Y1 - 2005/10/1

N2 - The efficacy of platinum drugs in the treatment of cancer is often restricted by the acquisition of tumor cell resistance subsequent to treatment. To better understand mechanisms involved in this phenomenon, a clonal subline (A2780/C10B) isolated from an oxaliplatin-resistant human ovarian carcinoma cell line (A2780/C10) was developed, as reported previously. This cell line is 18-fold resistant to oxaliplatin and shows a 3-fold cross resistance to cisplatin. Here, we report on the gene expression analysis using Affymetrix HG-U95Av2 oligonucleotide arrays of cells in log phase growth from both the parental cell line and drug-resistant variant. Probe level analysis was perfomed using the model based expression index (dChip) and robust multichip average (RMA) methods. Genes that were differentially expressed between the two groups were identified using the significance analysis of microarrays (SAM) method with a minimum false discovery rate <1%. We identified 43 genes that were overexpressed, and 39 underexpressed in the drug-resistant cell line. Collagen VI (COL6A3) was overexpressed 62-fold and the most highly up-regulated gene. This finding is consistent with other published data based on serial analysis of gene expression (SAGE) profiling of cisplatin-resistant and sensitive ovarian carcinoma cells. Among the significant functional groups of overexpressed genes in our study were extracellular matrix genes (9 of 43) and those involved in signal transduction (7 of 43). Extracellular matrix genes included two matrix metalloproteinases (MMP3 and MMP12). Integrin α 1 (ITGA1) and WNT5A were also overexpressed. Genes that encode for extracellular matrix proteins were also among those found down-regulated in the resistant cell line. Several genes involved in the regulation of cell cycle and growth were found to be underexpressed, including the suppressor of cytokine signaling 2 (SOCS2), necdin (NDN), and glypicans (GPC3 and GPC4). The mRNA levels of six differentially expressed genes (COL6A3, MMP12, MMP3, WNT5A, NID, and HMGB2) were validated using real-time quantitative RT-PCR. The identification of these genes should aid in a better understanding of the pathways resulting in platinum drug resistance.

AB - The efficacy of platinum drugs in the treatment of cancer is often restricted by the acquisition of tumor cell resistance subsequent to treatment. To better understand mechanisms involved in this phenomenon, a clonal subline (A2780/C10B) isolated from an oxaliplatin-resistant human ovarian carcinoma cell line (A2780/C10) was developed, as reported previously. This cell line is 18-fold resistant to oxaliplatin and shows a 3-fold cross resistance to cisplatin. Here, we report on the gene expression analysis using Affymetrix HG-U95Av2 oligonucleotide arrays of cells in log phase growth from both the parental cell line and drug-resistant variant. Probe level analysis was perfomed using the model based expression index (dChip) and robust multichip average (RMA) methods. Genes that were differentially expressed between the two groups were identified using the significance analysis of microarrays (SAM) method with a minimum false discovery rate <1%. We identified 43 genes that were overexpressed, and 39 underexpressed in the drug-resistant cell line. Collagen VI (COL6A3) was overexpressed 62-fold and the most highly up-regulated gene. This finding is consistent with other published data based on serial analysis of gene expression (SAGE) profiling of cisplatin-resistant and sensitive ovarian carcinoma cells. Among the significant functional groups of overexpressed genes in our study were extracellular matrix genes (9 of 43) and those involved in signal transduction (7 of 43). Extracellular matrix genes included two matrix metalloproteinases (MMP3 and MMP12). Integrin α 1 (ITGA1) and WNT5A were also overexpressed. Genes that encode for extracellular matrix proteins were also among those found down-regulated in the resistant cell line. Several genes involved in the regulation of cell cycle and growth were found to be underexpressed, including the suppressor of cytokine signaling 2 (SOCS2), necdin (NDN), and glypicans (GPC3 and GPC4). The mRNA levels of six differentially expressed genes (COL6A3, MMP12, MMP3, WNT5A, NID, and HMGB2) were validated using real-time quantitative RT-PCR. The identification of these genes should aid in a better understanding of the pathways resulting in platinum drug resistance.

KW - Affymetrix

KW - Gene expression

KW - Oxaliplatin

KW - Resistance

UR - http://www.scopus.com/inward/record.url?scp=33644827996&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644827996&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 925

EP - 932

JO - Oncology Reports

JF - Oncology Reports

SN - 1021-335X

IS - 4

ER -