TY - JOUR
T1 - Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes
T2 - A prospective study in children
AU - for the TEDDY Study Group
AU - Bonifacio, Ezio
AU - Beyerlein, Andreas
AU - Hippich, Markus
AU - Winkler, Christiane
AU - Vehik, Kendra
AU - Weedon, Michael N.
AU - Laimighofer, Michael
AU - Hattersley, Andrew T.
AU - Krumsiek, Jan
AU - Frohnert, Brigitte I.
AU - Steck, Andrea K.
AU - Hagopian, William A.
AU - Krischer, Jeffrey P.
AU - Lernmark, Åke
AU - Rewers, Marian J.
AU - She, Jin Xiong
AU - Toppari, Jorma
AU - She, Jin-Xiong
AU - Oram, Richard A.
AU - Rich, Stephen S.
AU - Ziegler, Anette G.
N1 - Funding Information:
This work was supported by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Juvenile Diabetes Research Foundation (JDRF), and Centers for Disease Control and Prevention (CDC). This work was supported in part by NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR001082), and by iMed–the Helmholtz Initiative on Personalized Medicine.
Publisher Copyright:
© 2018 Public Library of Science. All Rights Reserved.
PY - 2018/4
Y1 - 2018/4
N2 - Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
AB - Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
UR - http://www.scopus.com/inward/record.url?scp=85046033349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046033349&partnerID=8YFLogxK
U2 - 10.1371/journal.pmed.1002548
DO - 10.1371/journal.pmed.1002548
M3 - Article
C2 - 29614081
AN - SCOPUS:85046033349
VL - 15
JO - PLoS Medicine
JF - PLoS Medicine
SN - 1549-1277
IS - 4
M1 - e1002548
ER -