How reliable is the pattern adaptation technique? A modeling study

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Upon prolonged viewing of a sinusoidal grating, the visual system is selectively desensitized to the spatial frequency of the grating, while the sensitivity to other spatial frequencies remains largely unaffected. This technique, known as pattern adaptation, has been so central to the psychophysical study of the mechanisms of spatial vision that it is sometimes referred to as the "psychologist's microelectrode." While this approach implicitly assumes that the adaptation behavior of the system is diagnostic of the corresponding underlying neural mechanisms, this assumption has never been explicitly tested. We tested this assumption using adaptation bandwidth, or the range of spatial frequencies affected by adaptation, as a representative measure of adaptation. We constructed an intentionally simple neuronal ensemble model of spatial frequency processing and examined the extent to which the adaptation bandwidth at the system level reflected the bandwidth at the neuronal level. We find that the adaptation bandwidth could vary widely even when all spatial frequency tuning parameters were held constant. Conversely, different spatial frequency tuning parameters were able to elicit similar adaptation bandwidths from the neuronal ensemble. Thus, the tuning properties of the underlying units did not reliably reflect the adaptation bandwidth at the system level, and vice versa. Furthermore, depending on the noisiness of adaptation at the neural level, the same neuronal ensemble was able to produce selective or nonselective adaptation at the system level, indicating that a lack of selective adaptation at the system level cannot be taken to mean a lack of tuned mechanisms at the neural level. Together, our results indicate that pattern adaptation cannot be used to reliably estimate the tuning properties of the underlying units, and imply, more generally, that pattern adaptation is not a reliable tool for studying the neural mechanisms of pattern analysis.

Original languageEnglish (US)
Pages (from-to)2245-2252
Number of pages8
JournalJournal of Neurophysiology
Volume102
Issue number4
DOIs
StatePublished - Oct 1 2009

Fingerprint

Microelectrodes
Psychology
Spatial Processing

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology

Cite this

How reliable is the pattern adaptation technique? A modeling study. / Hegdé, Jay.

In: Journal of Neurophysiology, Vol. 102, No. 4, 01.10.2009, p. 2245-2252.

Research output: Contribution to journalArticle

@article{741c7b2d18d54114a270be703a18c300,
title = "How reliable is the pattern adaptation technique? A modeling study",
abstract = "Upon prolonged viewing of a sinusoidal grating, the visual system is selectively desensitized to the spatial frequency of the grating, while the sensitivity to other spatial frequencies remains largely unaffected. This technique, known as pattern adaptation, has been so central to the psychophysical study of the mechanisms of spatial vision that it is sometimes referred to as the {"}psychologist's microelectrode.{"} While this approach implicitly assumes that the adaptation behavior of the system is diagnostic of the corresponding underlying neural mechanisms, this assumption has never been explicitly tested. We tested this assumption using adaptation bandwidth, or the range of spatial frequencies affected by adaptation, as a representative measure of adaptation. We constructed an intentionally simple neuronal ensemble model of spatial frequency processing and examined the extent to which the adaptation bandwidth at the system level reflected the bandwidth at the neuronal level. We find that the adaptation bandwidth could vary widely even when all spatial frequency tuning parameters were held constant. Conversely, different spatial frequency tuning parameters were able to elicit similar adaptation bandwidths from the neuronal ensemble. Thus, the tuning properties of the underlying units did not reliably reflect the adaptation bandwidth at the system level, and vice versa. Furthermore, depending on the noisiness of adaptation at the neural level, the same neuronal ensemble was able to produce selective or nonselective adaptation at the system level, indicating that a lack of selective adaptation at the system level cannot be taken to mean a lack of tuned mechanisms at the neural level. Together, our results indicate that pattern adaptation cannot be used to reliably estimate the tuning properties of the underlying units, and imply, more generally, that pattern adaptation is not a reliable tool for studying the neural mechanisms of pattern analysis.",
author = "Jay Hegd{\'e}",
year = "2009",
month = "10",
day = "1",
doi = "10.1152/jn.00216.2009",
language = "English (US)",
volume = "102",
pages = "2245--2252",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - How reliable is the pattern adaptation technique? A modeling study

AU - Hegdé, Jay

PY - 2009/10/1

Y1 - 2009/10/1

N2 - Upon prolonged viewing of a sinusoidal grating, the visual system is selectively desensitized to the spatial frequency of the grating, while the sensitivity to other spatial frequencies remains largely unaffected. This technique, known as pattern adaptation, has been so central to the psychophysical study of the mechanisms of spatial vision that it is sometimes referred to as the "psychologist's microelectrode." While this approach implicitly assumes that the adaptation behavior of the system is diagnostic of the corresponding underlying neural mechanisms, this assumption has never been explicitly tested. We tested this assumption using adaptation bandwidth, or the range of spatial frequencies affected by adaptation, as a representative measure of adaptation. We constructed an intentionally simple neuronal ensemble model of spatial frequency processing and examined the extent to which the adaptation bandwidth at the system level reflected the bandwidth at the neuronal level. We find that the adaptation bandwidth could vary widely even when all spatial frequency tuning parameters were held constant. Conversely, different spatial frequency tuning parameters were able to elicit similar adaptation bandwidths from the neuronal ensemble. Thus, the tuning properties of the underlying units did not reliably reflect the adaptation bandwidth at the system level, and vice versa. Furthermore, depending on the noisiness of adaptation at the neural level, the same neuronal ensemble was able to produce selective or nonselective adaptation at the system level, indicating that a lack of selective adaptation at the system level cannot be taken to mean a lack of tuned mechanisms at the neural level. Together, our results indicate that pattern adaptation cannot be used to reliably estimate the tuning properties of the underlying units, and imply, more generally, that pattern adaptation is not a reliable tool for studying the neural mechanisms of pattern analysis.

AB - Upon prolonged viewing of a sinusoidal grating, the visual system is selectively desensitized to the spatial frequency of the grating, while the sensitivity to other spatial frequencies remains largely unaffected. This technique, known as pattern adaptation, has been so central to the psychophysical study of the mechanisms of spatial vision that it is sometimes referred to as the "psychologist's microelectrode." While this approach implicitly assumes that the adaptation behavior of the system is diagnostic of the corresponding underlying neural mechanisms, this assumption has never been explicitly tested. We tested this assumption using adaptation bandwidth, or the range of spatial frequencies affected by adaptation, as a representative measure of adaptation. We constructed an intentionally simple neuronal ensemble model of spatial frequency processing and examined the extent to which the adaptation bandwidth at the system level reflected the bandwidth at the neuronal level. We find that the adaptation bandwidth could vary widely even when all spatial frequency tuning parameters were held constant. Conversely, different spatial frequency tuning parameters were able to elicit similar adaptation bandwidths from the neuronal ensemble. Thus, the tuning properties of the underlying units did not reliably reflect the adaptation bandwidth at the system level, and vice versa. Furthermore, depending on the noisiness of adaptation at the neural level, the same neuronal ensemble was able to produce selective or nonselective adaptation at the system level, indicating that a lack of selective adaptation at the system level cannot be taken to mean a lack of tuned mechanisms at the neural level. Together, our results indicate that pattern adaptation cannot be used to reliably estimate the tuning properties of the underlying units, and imply, more generally, that pattern adaptation is not a reliable tool for studying the neural mechanisms of pattern analysis.

UR - http://www.scopus.com/inward/record.url?scp=70350331888&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350331888&partnerID=8YFLogxK

U2 - 10.1152/jn.00216.2009

DO - 10.1152/jn.00216.2009

M3 - Article

C2 - 19553490

AN - SCOPUS:70350331888

VL - 102

SP - 2245

EP - 2252

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 4

ER -