HYAL1 hyaluronidase: A molecular determinant of bladder tumor growth and invasion

Vinata B. Lokeshwar, Wolfgang H. Cerwinka, Bal L. Lokeshwar

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

Hyaluronic acid and HYAL1-type hyaluronidase show high accuracy in detecting bladder cancer and evaluating its grade, respectively. Hyaluronic acid promotes tumor progression; however, the functions of hyaluronidase in cancer are largely unknown. In this study, we stably transfected HT1376 bladder cancer cells with HYAL1-sense (HYAL1-S), HYAL1-antisense (HYAL1-AS), or vector cDNA constructs. Whereas HYAL1-S transfectants produced 3-fold more HYAL1 than vector transfectants, HYAL1-AS transfectants showed ∼90% reduction in HYAL1 production. HYAL1-AS transfectants grew four times slower than vector and HYAL1-S transfectants and were blocked in the G2-M phase of the cell cycle. The expression of cdc25c and cyclin B1 and cdc2/p34-associated H1 histone kinase activity also decreased in HYAL1-AS transfectants. HYAL1-S transfectants were 30% to 44% more invasive, and HYAL1-AS transfectants were ∼50% less invasive than the vector transfectants in vitro. In xenografts, there was a 4- to 5-fold delay in the generation of palpable HYAL1-AS tumors, and the weight of HYAL1-AS tumors was 9- to 17-fold less than vector and HYAL1-S tumors, respectively (P < 0.001). Whereas HYAL1-S and vector tumors infiltrated skeletal muscle and blood vessels, HYAL1-AS tumors resembled benign neoplasia. HYAL1-S and vector tumors expressed significantly higher amounts of HYAL1 (in tumor cells) and hyaluronic acid (in tumor-associated stroma) than HYAL1-AS tumors. Microvessel density in HYAL1-S tumors was 3.8- and 9.5-fold higher than that in vector and HYAL1-AS tumors, respectively. These results show that HYAL1 expression in bladder cancer cells regulates tumor growth and progression and therefore serves as a marker for high-grade bladder cancer.

Original languageEnglish (US)
Pages (from-to)2243-2250
Number of pages8
JournalCancer Research
Volume65
Issue number6
DOIs
StatePublished - Mar 15 2005
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'HYAL1 hyaluronidase: A molecular determinant of bladder tumor growth and invasion'. Together they form a unique fingerprint.

Cite this