@article{c4206a6b74b14abba167374ce6d9db09,
title = "Impacts of the Thermal Gradient on Inland Advecting Sea Breezes in the Southeastern United States",
abstract = "Sea breezes are frequently observed in the South Carolina/Georgia region of the Southeastern United States (SEUS) and can reach upwards of 150km inland. This region is unique among the places frequently affected by sea breeze due to it being a continental location with relatively flat topography. The thermal gradient between land and water environments is a factor in introducing the sea breeze, but its role in the inland extent of sea breeze propagation isn{\textquoteright}t as well known. We investigate the role of the thermal gradient in previously catalogued sea breeze events observed at the Savannah River Site (SRS) by taking differences of temperature measurements at inland and coastal weather stations for the days that the events occurred. We saw that the temperature differences for those days were much higher than in the non-sea breeze days during the mornings and afternoon. Numerical models were also used to conduct a sensitivity study on a sea breeze case, using simple modifications of the temperature gradient. We found that while the modifications did not stop the generation of a sea breeze circulation, the extent of the inland propagation was dependent on the magnitude of the thermal gradient.",
keywords = "boundary-layer, numerical weather prediction, sea breeze",
author = "Joseph Wermter and Stephen Noble and Brian Viner",
note = "Funding Information: Funding: This work was supported by the Laboratory Directed Research and Development (LDRD) program within the Savannah River National Laboratory (SRNL). This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM). This work was produced by Battelle Savannah River Alliance, LLC under Contract No. 89303321CEM000080 with the U.S. Department of Energy. Publisher acknowledges the U.S. Government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan (accessed on 2 May 2022)). Funding Information: This work was supported by the Laboratory Directed Research and Development (LDRD) program within the Savannah River National Laboratory (SRNL). This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM). This work was produced by Battelle Savannah River Alliance, LLC under Contract No. 89303321CEM000080 with the U.S. Department of Energy. Publisher acknowledges the U.S. Government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan (accessed on 2 May 2022)).We acknowledge the efforts of Steve Chiswell, who leads SRNL{\textquoteright}s atmospheric research program. Publisher Copyright: {\textcopyright} 2022 by the authors. Licensee MDPI, Basel, Switzerland.",
year = "2022",
month = jul,
doi = "10.3390/atmos13071004",
language = "English (US)",
volume = "13",
journal = "ATMOSPHERE",
issn = "2073-4433",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "7",
}