Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration

Kazutoshi Aoyama, Asim Saha, Jakub Tolar, Megan J. Riddle, Rachelle G. Veenstra, Patricia A. Taylor, Rune Blomhoff, Angela Panoskaltsis-Mortari, Christopher A. Klebanoff, Ǵerard Socíe, David H. Munn, William J. Murphy, Jonathan S. Serody, Le Shara M. Fulton, Takanori Teshima, Roshantha A. Chandraratna, Ethan Dmitrovsky, Yanxia Guo, Randolph J. Noelle, Bruce R. Blazar

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Graft-versus-host disease (GVHD) is a critical complication after allogeneic bone marrow transplantation. During GVHD, donor T cells are activated by host antigen-presenting cells and differentiate into T-effector cells (Teffs) that migrate to GVHD target organs. However, local environmental factors influencing Teff differentiation and migration are largely unknown. Vitamin A metabolism within the intestine produces retinoic acid, which contributes to intestinal homeostasis and tolerance induction. Here, we show that the expression and function of Vitamin A-metabolizing enzymes were increased in the intestine and mesenteric lymph nodes in mice with active GVHD. Moreover, transgenic donor T cells expressing a retinoic acid receptor (RAR) response element luciferase reporter responded to increased Vitamin A metabolites in GVHD-Affected organs. Increasing RAR signaling accelerated GVHD lethality, whereas donor T cells expressing a dominant-negative RARa (dnRARa) showed markedly diminished lethality. The dnRARa transgenic T cells showed reduced Th1 differentiation and a4b7 and CCR9 expression associated with poor intestinal migration, low GVHD pathology, and reduced intestinal permeability, primarily via CD41 T cells. The inhibition of RAR signaling augmented donor-induced Treg generation and expansion in vivo, while preserving graft-versus-leukemia effects. Together, these results suggested that reagents blunting donor T-cell RAR signaling may possess therapeutic anti-GVHD properties.

Original languageEnglish (US)
Pages (from-to)2125-2134
Number of pages10
JournalBlood
Volume122
Issue number12
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration'. Together they form a unique fingerprint.

Cite this