Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells

Juan Mo, Ming Zhang, Brendan Marshall, Sylvia B Smith, Jason Covar, Sally Atherton

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Purpose: Previous studies have demonstrated that autophagy is involved in the pathogenesis of human cytomegalovirus (HCMV) infection. However, whether autophagy is regulated by murine cytomegalovirus (MCMV) infection has not yet been investigated. The purpose of these studies was to determine how autophagy is affected by MCMV infection of the retinal pigment epithelial (RPE) cells and whether there is a functional relationship between autophagy and apoptosis; and if so, how regulation of autophagy impacts apoptosis. Methods: RPE cells were isolated from C57BL/6 mice and infected with MCMV K181. The cells were cultured in medium containing rapamycin, chloroquine, or ammonium chloride. Green fluorescent protein-light chain 3 (GFP-LC3) plasmid was transfected to RPE cells, and the GFP-LC3 positive puncta were counted. Electron microscopic (EM) images were taken to visualize the structure of the autophagic vacuoles. Western blot was performed to detect the expression of related proteins. Trypan blue exclusion assay was used to measure the percentage of viable cells. Results: Although the LC3B-II levels consistently increased during MCMV infection of RPE cells, administration of chloroquine or ammonium chloride increased LC3B-II expression only at the early stage of infection (6 h post-inoculation [p.i.] and 12 h p.i.), not at or after 24 h p. The punctate autophagic vacuoles in the GFP-LC3 transfected RPE cells were counted using light microscopy or by EM examination. The number of autophagic vacuoles was significantly increased in the MCMV-infected RPE cells compared to the uninfected controls. Compared to untreated MCMV-infected control cells, rapamycin treatment resulted in a significant decrease in the cleaved caspase 3 levels as well as a significant decrease in the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR and in the ratio of phosphorylated P70S6K to total P70S6K. In contrast, chloroquine treatment resulted in a significant increase in the cleaved caspase 3 levels in the MCMV-infected RPE cells. Conclusions: Autophagic vacuole accumulation was detected during MCMV infection of RPE cells. In contrast, autophagic flux was greatly decreased at or after 24 h p.i. The results suggest that MCMV might have a strategy for inhibiting or blocking autophagy activity by targeting a later autophagy process, such as the formation of autolysosomes or degradation of their content. Our data also suggest that there is a functional relationship between autophagy and apoptosis, which plays an important role during MCMV infection of the RPE.

Original languageEnglish (US)
Pages (from-to)1161-1173
Number of pages13
JournalMolecular Vision
Volume20
StatePublished - Aug 14 2014

Fingerprint

Muromegalovirus
Retinal Pigments
Autophagy
Cytomegalovirus Infections
Epithelial Cells
Apoptosis
Sirolimus
Vacuoles
Chloroquine
Green Fluorescent Proteins
70-kDa Ribosomal Protein S6 Kinases
Light
Ammonium Chloride
Caspase 3
Trypan Blue
Inbred C57BL Mouse
Cultured Cells
Electron Microscopy
Plasmids
Western Blotting

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells. / Mo, Juan; Zhang, Ming; Marshall, Brendan; Smith, Sylvia B; Covar, Jason; Atherton, Sally.

In: Molecular Vision, Vol. 20, 14.08.2014, p. 1161-1173.

Research output: Contribution to journalArticle

Mo, Juan ; Zhang, Ming ; Marshall, Brendan ; Smith, Sylvia B ; Covar, Jason ; Atherton, Sally. / Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells. In: Molecular Vision. 2014 ; Vol. 20. pp. 1161-1173.
@article{97ab2c01058c4ab8a9c9a82bdaab879e,
title = "Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells",
abstract = "Purpose: Previous studies have demonstrated that autophagy is involved in the pathogenesis of human cytomegalovirus (HCMV) infection. However, whether autophagy is regulated by murine cytomegalovirus (MCMV) infection has not yet been investigated. The purpose of these studies was to determine how autophagy is affected by MCMV infection of the retinal pigment epithelial (RPE) cells and whether there is a functional relationship between autophagy and apoptosis; and if so, how regulation of autophagy impacts apoptosis. Methods: RPE cells were isolated from C57BL/6 mice and infected with MCMV K181. The cells were cultured in medium containing rapamycin, chloroquine, or ammonium chloride. Green fluorescent protein-light chain 3 (GFP-LC3) plasmid was transfected to RPE cells, and the GFP-LC3 positive puncta were counted. Electron microscopic (EM) images were taken to visualize the structure of the autophagic vacuoles. Western blot was performed to detect the expression of related proteins. Trypan blue exclusion assay was used to measure the percentage of viable cells. Results: Although the LC3B-II levels consistently increased during MCMV infection of RPE cells, administration of chloroquine or ammonium chloride increased LC3B-II expression only at the early stage of infection (6 h post-inoculation [p.i.] and 12 h p.i.), not at or after 24 h p. The punctate autophagic vacuoles in the GFP-LC3 transfected RPE cells were counted using light microscopy or by EM examination. The number of autophagic vacuoles was significantly increased in the MCMV-infected RPE cells compared to the uninfected controls. Compared to untreated MCMV-infected control cells, rapamycin treatment resulted in a significant decrease in the cleaved caspase 3 levels as well as a significant decrease in the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR and in the ratio of phosphorylated P70S6K to total P70S6K. In contrast, chloroquine treatment resulted in a significant increase in the cleaved caspase 3 levels in the MCMV-infected RPE cells. Conclusions: Autophagic vacuole accumulation was detected during MCMV infection of RPE cells. In contrast, autophagic flux was greatly decreased at or after 24 h p.i. The results suggest that MCMV might have a strategy for inhibiting or blocking autophagy activity by targeting a later autophagy process, such as the formation of autolysosomes or degradation of their content. Our data also suggest that there is a functional relationship between autophagy and apoptosis, which plays an important role during MCMV infection of the RPE.",
author = "Juan Mo and Ming Zhang and Brendan Marshall and Smith, {Sylvia B} and Jason Covar and Sally Atherton",
year = "2014",
month = "8",
day = "14",
language = "English (US)",
volume = "20",
pages = "1161--1173",
journal = "Molecular Vision",
issn = "1090-0535",

}

TY - JOUR

T1 - Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells

AU - Mo, Juan

AU - Zhang, Ming

AU - Marshall, Brendan

AU - Smith, Sylvia B

AU - Covar, Jason

AU - Atherton, Sally

PY - 2014/8/14

Y1 - 2014/8/14

N2 - Purpose: Previous studies have demonstrated that autophagy is involved in the pathogenesis of human cytomegalovirus (HCMV) infection. However, whether autophagy is regulated by murine cytomegalovirus (MCMV) infection has not yet been investigated. The purpose of these studies was to determine how autophagy is affected by MCMV infection of the retinal pigment epithelial (RPE) cells and whether there is a functional relationship between autophagy and apoptosis; and if so, how regulation of autophagy impacts apoptosis. Methods: RPE cells were isolated from C57BL/6 mice and infected with MCMV K181. The cells were cultured in medium containing rapamycin, chloroquine, or ammonium chloride. Green fluorescent protein-light chain 3 (GFP-LC3) plasmid was transfected to RPE cells, and the GFP-LC3 positive puncta were counted. Electron microscopic (EM) images were taken to visualize the structure of the autophagic vacuoles. Western blot was performed to detect the expression of related proteins. Trypan blue exclusion assay was used to measure the percentage of viable cells. Results: Although the LC3B-II levels consistently increased during MCMV infection of RPE cells, administration of chloroquine or ammonium chloride increased LC3B-II expression only at the early stage of infection (6 h post-inoculation [p.i.] and 12 h p.i.), not at or after 24 h p. The punctate autophagic vacuoles in the GFP-LC3 transfected RPE cells were counted using light microscopy or by EM examination. The number of autophagic vacuoles was significantly increased in the MCMV-infected RPE cells compared to the uninfected controls. Compared to untreated MCMV-infected control cells, rapamycin treatment resulted in a significant decrease in the cleaved caspase 3 levels as well as a significant decrease in the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR and in the ratio of phosphorylated P70S6K to total P70S6K. In contrast, chloroquine treatment resulted in a significant increase in the cleaved caspase 3 levels in the MCMV-infected RPE cells. Conclusions: Autophagic vacuole accumulation was detected during MCMV infection of RPE cells. In contrast, autophagic flux was greatly decreased at or after 24 h p.i. The results suggest that MCMV might have a strategy for inhibiting or blocking autophagy activity by targeting a later autophagy process, such as the formation of autolysosomes or degradation of their content. Our data also suggest that there is a functional relationship between autophagy and apoptosis, which plays an important role during MCMV infection of the RPE.

AB - Purpose: Previous studies have demonstrated that autophagy is involved in the pathogenesis of human cytomegalovirus (HCMV) infection. However, whether autophagy is regulated by murine cytomegalovirus (MCMV) infection has not yet been investigated. The purpose of these studies was to determine how autophagy is affected by MCMV infection of the retinal pigment epithelial (RPE) cells and whether there is a functional relationship between autophagy and apoptosis; and if so, how regulation of autophagy impacts apoptosis. Methods: RPE cells were isolated from C57BL/6 mice and infected with MCMV K181. The cells were cultured in medium containing rapamycin, chloroquine, or ammonium chloride. Green fluorescent protein-light chain 3 (GFP-LC3) plasmid was transfected to RPE cells, and the GFP-LC3 positive puncta were counted. Electron microscopic (EM) images were taken to visualize the structure of the autophagic vacuoles. Western blot was performed to detect the expression of related proteins. Trypan blue exclusion assay was used to measure the percentage of viable cells. Results: Although the LC3B-II levels consistently increased during MCMV infection of RPE cells, administration of chloroquine or ammonium chloride increased LC3B-II expression only at the early stage of infection (6 h post-inoculation [p.i.] and 12 h p.i.), not at or after 24 h p. The punctate autophagic vacuoles in the GFP-LC3 transfected RPE cells were counted using light microscopy or by EM examination. The number of autophagic vacuoles was significantly increased in the MCMV-infected RPE cells compared to the uninfected controls. Compared to untreated MCMV-infected control cells, rapamycin treatment resulted in a significant decrease in the cleaved caspase 3 levels as well as a significant decrease in the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR and in the ratio of phosphorylated P70S6K to total P70S6K. In contrast, chloroquine treatment resulted in a significant increase in the cleaved caspase 3 levels in the MCMV-infected RPE cells. Conclusions: Autophagic vacuole accumulation was detected during MCMV infection of RPE cells. In contrast, autophagic flux was greatly decreased at or after 24 h p.i. The results suggest that MCMV might have a strategy for inhibiting or blocking autophagy activity by targeting a later autophagy process, such as the formation of autolysosomes or degradation of their content. Our data also suggest that there is a functional relationship between autophagy and apoptosis, which plays an important role during MCMV infection of the RPE.

UR - http://www.scopus.com/inward/record.url?scp=84907309944&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84907309944&partnerID=8YFLogxK

M3 - Article

C2 - 25324684

AN - SCOPUS:84907309944

VL - 20

SP - 1161

EP - 1173

JO - Molecular Vision

JF - Molecular Vision

SN - 1090-0535

ER -