Knockdown of zebrafish lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype

Yong Teng, Xiayang Xie, Steven Walker, Grzegorz Rempala, David J. Kozlowski, Jeff S. Mumm, John K. Cowell

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Epilepsy is a common disorder, typified by recurrent seizures with underlying neurological disorders or disease. Approximately one-third of patients are unresponsive to currently available therapies. Thus, a deeper understanding of the genetics and etiology of epilepsy is needed to advance the development of new therapies. Previously, treatment of zebrafish with epilepsy-inducing pharmacological agents was shown to result in a seizure-like phenotype, suggesting that fish provide a tractable model to understand the function of epilepsy-predisposing genes. Here, we report the first model of genetically linked epilepsy in zebrafish and provide an initial characterization of the behavioral and neurological phenotypes associated with morpholino (MO) knockdown of leucine-rich, glioma-inactivated 1a (lgi1a) expression. Mutations in the LGI1 gene in humans have been shown to predispose to a subtype of autosomal dominant epilepsy. Low-dose Lgi1a MO knockdown fish (morphants) appear morphologically normal but are sensitized to epilepsy-inducing drugs. High-dose Lgi1a morphants have morphological defects which persist into adult stages that are typified by smaller brains and eyes and abnormalities in tail shape, and display hyperactive swimming behaviors. Increased apoptosis was observed throughout the central nervous system of high-dose morphant fish, accounting for the size reduction of neural tissues. These observations demonstrate that zebrafish can be exploited to dissect the embryonic function(s) of genes known to predispose to seizure-like behavior in humans, and offer potential insight into the relationship between developmental neurobiological abnormalities and seizure.

Original languageEnglish (US)
Article numberddq364
Pages (from-to)4409-4420
Number of pages12
JournalHuman Molecular Genetics
Volume19
Issue number22
DOIs
StatePublished - Nov 1 2010

Fingerprint

Zebrafish
Leucine
Glioma
Epilepsy
Seizures
Phenotype
Brain
Morpholinos
Fishes
Eye Abnormalities
Genes
Nervous System Diseases
Tail
Therapeutics
Central Nervous System
Pharmacology
Apoptosis
Mutation
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Cite this

Knockdown of zebrafish lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. / Teng, Yong; Xie, Xiayang; Walker, Steven; Rempala, Grzegorz; Kozlowski, David J.; Mumm, Jeff S.; Cowell, John K.

In: Human Molecular Genetics, Vol. 19, No. 22, ddq364, 01.11.2010, p. 4409-4420.

Research output: Contribution to journalArticle

@article{ba970c8ee301400d8374fdae025318eb,
title = "Knockdown of zebrafish lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype",
abstract = "Epilepsy is a common disorder, typified by recurrent seizures with underlying neurological disorders or disease. Approximately one-third of patients are unresponsive to currently available therapies. Thus, a deeper understanding of the genetics and etiology of epilepsy is needed to advance the development of new therapies. Previously, treatment of zebrafish with epilepsy-inducing pharmacological agents was shown to result in a seizure-like phenotype, suggesting that fish provide a tractable model to understand the function of epilepsy-predisposing genes. Here, we report the first model of genetically linked epilepsy in zebrafish and provide an initial characterization of the behavioral and neurological phenotypes associated with morpholino (MO) knockdown of leucine-rich, glioma-inactivated 1a (lgi1a) expression. Mutations in the LGI1 gene in humans have been shown to predispose to a subtype of autosomal dominant epilepsy. Low-dose Lgi1a MO knockdown fish (morphants) appear morphologically normal but are sensitized to epilepsy-inducing drugs. High-dose Lgi1a morphants have morphological defects which persist into adult stages that are typified by smaller brains and eyes and abnormalities in tail shape, and display hyperactive swimming behaviors. Increased apoptosis was observed throughout the central nervous system of high-dose morphant fish, accounting for the size reduction of neural tissues. These observations demonstrate that zebrafish can be exploited to dissect the embryonic function(s) of genes known to predispose to seizure-like behavior in humans, and offer potential insight into the relationship between developmental neurobiological abnormalities and seizure.",
author = "Yong Teng and Xiayang Xie and Steven Walker and Grzegorz Rempala and Kozlowski, {David J.} and Mumm, {Jeff S.} and Cowell, {John K.}",
year = "2010",
month = "11",
day = "1",
doi = "10.1093/hmg/ddq364",
language = "English (US)",
volume = "19",
pages = "4409--4420",
journal = "Human Molecular Genetics",
issn = "0964-6906",
publisher = "Oxford University Press",
number = "22",

}

TY - JOUR

T1 - Knockdown of zebrafish lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype

AU - Teng, Yong

AU - Xie, Xiayang

AU - Walker, Steven

AU - Rempala, Grzegorz

AU - Kozlowski, David J.

AU - Mumm, Jeff S.

AU - Cowell, John K.

PY - 2010/11/1

Y1 - 2010/11/1

N2 - Epilepsy is a common disorder, typified by recurrent seizures with underlying neurological disorders or disease. Approximately one-third of patients are unresponsive to currently available therapies. Thus, a deeper understanding of the genetics and etiology of epilepsy is needed to advance the development of new therapies. Previously, treatment of zebrafish with epilepsy-inducing pharmacological agents was shown to result in a seizure-like phenotype, suggesting that fish provide a tractable model to understand the function of epilepsy-predisposing genes. Here, we report the first model of genetically linked epilepsy in zebrafish and provide an initial characterization of the behavioral and neurological phenotypes associated with morpholino (MO) knockdown of leucine-rich, glioma-inactivated 1a (lgi1a) expression. Mutations in the LGI1 gene in humans have been shown to predispose to a subtype of autosomal dominant epilepsy. Low-dose Lgi1a MO knockdown fish (morphants) appear morphologically normal but are sensitized to epilepsy-inducing drugs. High-dose Lgi1a morphants have morphological defects which persist into adult stages that are typified by smaller brains and eyes and abnormalities in tail shape, and display hyperactive swimming behaviors. Increased apoptosis was observed throughout the central nervous system of high-dose morphant fish, accounting for the size reduction of neural tissues. These observations demonstrate that zebrafish can be exploited to dissect the embryonic function(s) of genes known to predispose to seizure-like behavior in humans, and offer potential insight into the relationship between developmental neurobiological abnormalities and seizure.

AB - Epilepsy is a common disorder, typified by recurrent seizures with underlying neurological disorders or disease. Approximately one-third of patients are unresponsive to currently available therapies. Thus, a deeper understanding of the genetics and etiology of epilepsy is needed to advance the development of new therapies. Previously, treatment of zebrafish with epilepsy-inducing pharmacological agents was shown to result in a seizure-like phenotype, suggesting that fish provide a tractable model to understand the function of epilepsy-predisposing genes. Here, we report the first model of genetically linked epilepsy in zebrafish and provide an initial characterization of the behavioral and neurological phenotypes associated with morpholino (MO) knockdown of leucine-rich, glioma-inactivated 1a (lgi1a) expression. Mutations in the LGI1 gene in humans have been shown to predispose to a subtype of autosomal dominant epilepsy. Low-dose Lgi1a MO knockdown fish (morphants) appear morphologically normal but are sensitized to epilepsy-inducing drugs. High-dose Lgi1a morphants have morphological defects which persist into adult stages that are typified by smaller brains and eyes and abnormalities in tail shape, and display hyperactive swimming behaviors. Increased apoptosis was observed throughout the central nervous system of high-dose morphant fish, accounting for the size reduction of neural tissues. These observations demonstrate that zebrafish can be exploited to dissect the embryonic function(s) of genes known to predispose to seizure-like behavior in humans, and offer potential insight into the relationship between developmental neurobiological abnormalities and seizure.

UR - http://www.scopus.com/inward/record.url?scp=77958491657&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77958491657&partnerID=8YFLogxK

U2 - 10.1093/hmg/ddq364

DO - 10.1093/hmg/ddq364

M3 - Article

C2 - 20819949

AN - SCOPUS:77958491657

VL - 19

SP - 4409

EP - 4420

JO - Human Molecular Genetics

JF - Human Molecular Genetics

SN - 0964-6906

IS - 22

M1 - ddq364

ER -