KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart

Richard J. Gumina, D. Fearghas O'Cochlain, Christopher E. Kurtz, Peter Bast, Darko Pucar, Prasanna Mishra, Takashi Miki, Susumu Seino, Slobodan Macura, Andre Terzic

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K+ (KATP) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. KATP channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of KATP channels in the intact organism has been the inability to monitor in vivo the contribution of the channel to intracellular calcium handling and the superimposed effect of sex that ultimately defines heart function. Here, in vivo manganese-enhanced cardiac magnetic resonance imaging revealed, under dobutamine stress, a significantly greater accumulation of calcium in both male and female KATP channel knockout (Kir6.2-KO) mice compared with sex- and age-matched wild-type (WT) counterparts, with greatest calcium load in Kir6.2-KO females. This translated, poststress, into a sustained contracture manifested by reduced end-diastolic volumes in KATP channel-deficient mice. In response to ischemia-induced stunning, male and female Kir6.2-KO hearts demonstrated accelerated time to contracture and increased peak contracture compared with WT. The outcome on reperfusion, in both male and female Kir6.2-KO hearts, was a transient reduction in systolic performance, measured as rate-pressure product compared with WT, with protracted increase in left ventricular end-diastolic pressure, exaggerated in female knockout hearts, despite comparable leakage of creatine kinase across groups. Kir6.2-KO hearts were rescued from diastolic dysfunction by agents that target alternative pathways of calcium handling. Thus KATP channel deficit confers a greater susceptibility to calcium overload in vivo, accentuated in female hearts, impairing contractile recovery under various conditions of high metabolic demand.

Original languageEnglish (US)
Pages (from-to)H1706-H1713
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume292
Issue number4
DOIs
StatePublished - Apr 2007
Externally publishedYes

Keywords

  • ATP-sensitive K channel
  • Kir6.2
  • Magnetic resonance imaging
  • Myocardium
  • Sex

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart'. Together they form a unique fingerprint.

Cite this