Leptin responsiveness of mice deficient in corticotrophin-releasing hormone receptor type 2

Ruth B.S. Harris

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Leptin acts centrally to inhibit food intake and increase energy expenditure. Corticotrophin-releasing hormone (CRH) is one of the neuropeptides that may contribute to leptin-induced hypophagia and thermogenesis. Acute leptin administration increases CRH mRNA expression in the paraventricular nucleus of the hypothalamus and CRH receptor type 2 (CRHR2) expression in the ventromedial nucleus of the hypothalamus. Studies described here used male and female CRHR2 knockout (KO) mice and wild-type (WT) controls to test the importance of CRHR2 in mediating the effects of leptin on food intake, weight gain and body composition. Peripheral injections of 0.5 mg/kg leptin for 3 days inhibited food intake in female WT and male KO mice, but inhibited weight gain in female KO and male WT mice suggesting an important role for thermogenesis in mediating weight loss. A single third ventricle injection of 1 μg leptin inhibited 12 h food intake of all mice, 36 h cumulative intake of KO mice and weight loss in WT and KO female and WT male mice. A 12-day peripheral infusion of 10 μg leptin/day had no effect on food intake of any group, but significantly reduced carcass fat and protein content of all mice. These results indicate that CRHR2 are not essential for the effects of leptin on food intake, body weight or body composition. Leptin response seems to be determined by a combination of mouse gender and genotype, but CRHR2 KO mice may have an extended response to central leptin injections compared with their WT controls.

Original languageEnglish (US)
Pages (from-to)198-206
Number of pages9
JournalNeuroendocrinology
Volume92
Issue number3
DOIs
StatePublished - Oct 2010
Externally publishedYes

Keywords

  • Body composition
  • Body weight
  • Food intake
  • Gender

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology
  • Endocrine and Autonomic Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Leptin responsiveness of mice deficient in corticotrophin-releasing hormone receptor type 2'. Together they form a unique fingerprint.

Cite this