Localizing NADPH oxidase-derived ROS.

Research output: Contribution to journalReview article

275 Citations (Scopus)

Abstract

Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

Original languageEnglish (US)
JournalScience's STKE : signal transduction knowledge environment
Volume2006
Issue number349
DOIs
StatePublished - Aug 22 2006
Externally publishedYes

Fingerprint

NADP
Reactive Oxygen Species
Oxidoreductases
Oxidation-Reduction
Cell Movement
Gene expression
TNF Receptor-Associated Factor 4
Wiskott-Aldrich Syndrome Protein Family
Chemical activation
Gene Expression
Caveolae
Pseudopodia
Molecules
Protein Tyrosine Phosphatases
Guanosine
Endosomes
Scaffolds
Catalytic Domain
Cells
Membranes

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Localizing NADPH oxidase-derived ROS. / Fukai, Masuko.

In: Science's STKE : signal transduction knowledge environment, Vol. 2006, No. 349, 22.08.2006.

Research output: Contribution to journalReview article

@article{7adade6c324a46c8be3b2cce16a49de0,
title = "Localizing NADPH oxidase-derived ROS.",
abstract = "Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.",
author = "Masuko Fukai",
year = "2006",
month = "8",
day = "22",
doi = "10.1126/stke.3492006re8",
language = "English (US)",
volume = "2006",
journal = "Science Signaling",
issn = "1937-9145",
publisher = "American Association for the Advancement of Science",
number = "349",

}

TY - JOUR

T1 - Localizing NADPH oxidase-derived ROS.

AU - Fukai, Masuko

PY - 2006/8/22

Y1 - 2006/8/22

N2 - Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

AB - Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

UR - http://www.scopus.com/inward/record.url?scp=33749047437&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749047437&partnerID=8YFLogxK

U2 - 10.1126/stke.3492006re8

DO - 10.1126/stke.3492006re8

M3 - Review article

VL - 2006

JO - Science Signaling

JF - Science Signaling

SN - 1937-9145

IS - 349

ER -