Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid β

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110-/- mice. Our results show that hsp110-/- mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110-/- mice compared to brain extracts from wild-type mice. Mice deficient in the. Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110-/- mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110-/- mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.

Original languageEnglish (US)
Pages (from-to)4626-4643
Number of pages18
JournalMolecular and Cellular Biology
Volume30
Issue number19
DOIs
StatePublished - Oct 1 2010

Fingerprint

Amyloid
Protein Phosphatase 2
Tauopathies
Amyloid beta-Protein Precursor
Heat-Shock Proteins
Alzheimer Disease
Phosphorylation
Serum Amyloid A Protein
Neurofibrillary Tangles
Molecular Chaperones
Brain
Mutant Proteins
Neurodegenerative Diseases
Quality Control
Homeostasis
Nucleotides
Central Nervous System
Maintenance
Phenotype

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Cite this

@article{9778d7e0ca16469aa75810d45331aa8c,
title = "Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid β",
abstract = "Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110-/- mice. Our results show that hsp110-/- mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110-/- mice compared to brain extracts from wild-type mice. Mice deficient in the. Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110-/- mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110-/- mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.",
author = "Binnur Eroglu and Dimitrios Moskofidis and Mivechi, {Nahid F}",
year = "2010",
month = "10",
day = "1",
doi = "10.1128/MCB.01493-09",
language = "English (US)",
volume = "30",
pages = "4626--4643",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "19",

}

TY - JOUR

T1 - Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid β

AU - Eroglu, Binnur

AU - Moskofidis, Dimitrios

AU - Mivechi, Nahid F

PY - 2010/10/1

Y1 - 2010/10/1

N2 - Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110-/- mice. Our results show that hsp110-/- mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110-/- mice compared to brain extracts from wild-type mice. Mice deficient in the. Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110-/- mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110-/- mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.

AB - Accumulation of tau into neurofibrillary tangles is a pathological consequence of Alzheimer's disease and other tauopathies. Failures of the quality control mechanisms by the heat shock proteins (Hsps) positively correlate with the appearance of such neurodegenerative diseases. However, in vivo genetic evidence for the roles of Hsps in neurodegeneration remains elusive. Hsp110 is a nucleotide exchange factor for Hsp70, and direct substrate binding to Hsp110 may facilitate substrate folding. Hsp70 complexes have been implicated in tau phosphorylation state and amyloid precursor protein (APP) processing. To provide evidence for a role for Hsp110 in central nervous system homeostasis, we have generated hsp110-/- mice. Our results show that hsp110-/- mice exhibit accumulation of hyperphosphorylated-tau (p-tau) and neurodegeneration. We also demonstrate that Hsp110 is in complexes with tau, other molecular chaperones, and protein phosphatase 2A (PP2A). Surprisingly, high levels of PP2A remain bound to tau but with significantly reduced activity in brain extracts from aged hsp110-/- mice compared to brain extracts from wild-type mice. Mice deficient in the. Hsp110 partner (Hsp70) also exhibit a phenotype comparable to that of hsp110-/- mice, confirming a critical role for Hsp110-Hsp70 in maintaining tau in its unphosphorylated form during aging. In addition, crossing hsp110-/- mice with mice overexpressing mutant APP (APPβsw) leads to selective appearance of insoluble amyloid β42 (Aβ42), suggesting an essential role for Hsp110 in APP processing and Aβ generation. Thus, our findings provide in vivo evidence that Hsp110 plays a critical function in tau phosphorylation state through maintenance of efficient PP2A activity, confirming its role in pathogenesis of Alzheimer's disease and other tauopathies.

UR - http://www.scopus.com/inward/record.url?scp=77956672926&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956672926&partnerID=8YFLogxK

U2 - 10.1128/MCB.01493-09

DO - 10.1128/MCB.01493-09

M3 - Article

C2 - 20679486

AN - SCOPUS:77956672926

VL - 30

SP - 4626

EP - 4643

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 19

ER -