Low-flow vascular remodeling in the metabolic syndrome X

David W Stepp, David M. Pollock, Jefferson C. Frisbee

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Peripheral microvascular dysfunction is a common affliction in patients with the metabolic syndrome X. Previous studies have described a number of vascular impairments in vasomotor control in both human patients and animal models of syndrome X, but the net effect of these impairments on microvascular structure has not been examined. The goal of the current study was to test the hypothesis that syndrome X reduces muscle perfusion and induces vascular remodeling. The obese Zucker rat was used as a model of syndrome X, and the microcirculation of the hindlimb and brain were examined. Obese Zucker rats were obese, hyperlipidemic, hyperinsulinemic, and hyperglycemic. Blood flow to the hindlimb was reduced by 59% in obese rats relative to lean rats. Skeletal muscle resistance arteries of the hindlimb microcirculation of obese rats had thinner walls, smaller lumens, and reduced distensibility. Hindlimb microvessels from obese rats also demonstrated reduced expression of vascular smooth muscle cell markers. Each of these traits is consistent with low-flow remodeling. In contrast, the cerebral microcirculation, where flow is vigorously autoregulated, showed no vascular remodeling nor were there changes in microvascular smooth muscle marker expression. Neither physical activity nor muscle mass were significantly different between lean and obese rats. Taken together, these findings suggest that syndrome X, by reducing hindlimb blood flow, induces a marked remodeling of microcirculation to favor smaller, less distensible vessels. This remodeling may result in an architectural limitation of maximum perfusion capacity and may be an important maladaption in the progression of peripheral microvascular disease.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume286
Issue number3 55-3
StatePublished - Mar 1 2004

Fingerprint

Metabolic Syndrome X
Hindlimb
Microcirculation
Zucker Rats
Perfusion
Muscles
Microvessels
Vascular Smooth Muscle
Smooth Muscle Myocytes
Smooth Muscle
Blood Vessels
Skeletal Muscle
Animal Models
Arteries
Vascular Remodeling
Exercise
Brain

Keywords

  • Microcirculation
  • Peripheral vascular disease
  • Smooth muscle cell markers

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

Low-flow vascular remodeling in the metabolic syndrome X. / Stepp, David W; Pollock, David M.; Frisbee, Jefferson C.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 286, No. 3 55-3, 01.03.2004.

Research output: Contribution to journalArticle

@article{413195df8309433c900f19670eef33df,
title = "Low-flow vascular remodeling in the metabolic syndrome X",
abstract = "Peripheral microvascular dysfunction is a common affliction in patients with the metabolic syndrome X. Previous studies have described a number of vascular impairments in vasomotor control in both human patients and animal models of syndrome X, but the net effect of these impairments on microvascular structure has not been examined. The goal of the current study was to test the hypothesis that syndrome X reduces muscle perfusion and induces vascular remodeling. The obese Zucker rat was used as a model of syndrome X, and the microcirculation of the hindlimb and brain were examined. Obese Zucker rats were obese, hyperlipidemic, hyperinsulinemic, and hyperglycemic. Blood flow to the hindlimb was reduced by 59{\%} in obese rats relative to lean rats. Skeletal muscle resistance arteries of the hindlimb microcirculation of obese rats had thinner walls, smaller lumens, and reduced distensibility. Hindlimb microvessels from obese rats also demonstrated reduced expression of vascular smooth muscle cell markers. Each of these traits is consistent with low-flow remodeling. In contrast, the cerebral microcirculation, where flow is vigorously autoregulated, showed no vascular remodeling nor were there changes in microvascular smooth muscle marker expression. Neither physical activity nor muscle mass were significantly different between lean and obese rats. Taken together, these findings suggest that syndrome X, by reducing hindlimb blood flow, induces a marked remodeling of microcirculation to favor smaller, less distensible vessels. This remodeling may result in an architectural limitation of maximum perfusion capacity and may be an important maladaption in the progression of peripheral microvascular disease.",
keywords = "Microcirculation, Peripheral vascular disease, Smooth muscle cell markers",
author = "Stepp, {David W} and Pollock, {David M.} and Frisbee, {Jefferson C.}",
year = "2004",
month = "3",
day = "1",
language = "English (US)",
volume = "286",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "3 55-3",

}

TY - JOUR

T1 - Low-flow vascular remodeling in the metabolic syndrome X

AU - Stepp, David W

AU - Pollock, David M.

AU - Frisbee, Jefferson C.

PY - 2004/3/1

Y1 - 2004/3/1

N2 - Peripheral microvascular dysfunction is a common affliction in patients with the metabolic syndrome X. Previous studies have described a number of vascular impairments in vasomotor control in both human patients and animal models of syndrome X, but the net effect of these impairments on microvascular structure has not been examined. The goal of the current study was to test the hypothesis that syndrome X reduces muscle perfusion and induces vascular remodeling. The obese Zucker rat was used as a model of syndrome X, and the microcirculation of the hindlimb and brain were examined. Obese Zucker rats were obese, hyperlipidemic, hyperinsulinemic, and hyperglycemic. Blood flow to the hindlimb was reduced by 59% in obese rats relative to lean rats. Skeletal muscle resistance arteries of the hindlimb microcirculation of obese rats had thinner walls, smaller lumens, and reduced distensibility. Hindlimb microvessels from obese rats also demonstrated reduced expression of vascular smooth muscle cell markers. Each of these traits is consistent with low-flow remodeling. In contrast, the cerebral microcirculation, where flow is vigorously autoregulated, showed no vascular remodeling nor were there changes in microvascular smooth muscle marker expression. Neither physical activity nor muscle mass were significantly different between lean and obese rats. Taken together, these findings suggest that syndrome X, by reducing hindlimb blood flow, induces a marked remodeling of microcirculation to favor smaller, less distensible vessels. This remodeling may result in an architectural limitation of maximum perfusion capacity and may be an important maladaption in the progression of peripheral microvascular disease.

AB - Peripheral microvascular dysfunction is a common affliction in patients with the metabolic syndrome X. Previous studies have described a number of vascular impairments in vasomotor control in both human patients and animal models of syndrome X, but the net effect of these impairments on microvascular structure has not been examined. The goal of the current study was to test the hypothesis that syndrome X reduces muscle perfusion and induces vascular remodeling. The obese Zucker rat was used as a model of syndrome X, and the microcirculation of the hindlimb and brain were examined. Obese Zucker rats were obese, hyperlipidemic, hyperinsulinemic, and hyperglycemic. Blood flow to the hindlimb was reduced by 59% in obese rats relative to lean rats. Skeletal muscle resistance arteries of the hindlimb microcirculation of obese rats had thinner walls, smaller lumens, and reduced distensibility. Hindlimb microvessels from obese rats also demonstrated reduced expression of vascular smooth muscle cell markers. Each of these traits is consistent with low-flow remodeling. In contrast, the cerebral microcirculation, where flow is vigorously autoregulated, showed no vascular remodeling nor were there changes in microvascular smooth muscle marker expression. Neither physical activity nor muscle mass were significantly different between lean and obese rats. Taken together, these findings suggest that syndrome X, by reducing hindlimb blood flow, induces a marked remodeling of microcirculation to favor smaller, less distensible vessels. This remodeling may result in an architectural limitation of maximum perfusion capacity and may be an important maladaption in the progression of peripheral microvascular disease.

KW - Microcirculation

KW - Peripheral vascular disease

KW - Smooth muscle cell markers

UR - http://www.scopus.com/inward/record.url?scp=1342283074&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1342283074&partnerID=8YFLogxK

M3 - Article

C2 - 14644764

AN - SCOPUS:1342283074

VL - 286

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 3 55-3

ER -