Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow

Shruti Sharma, Albert C. Grobe, Dean A. Wiseman, Sanjiv Kumar, Manal Englaish, Ida Najwer, Eileen Benavidez, Peter Oishi, Anthony Azakie, Jeffrey R. Fineman, Stephen Matthew Black

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H2O2) and superoxide (P < 0.05). Developmentally superoxide but not H2O2 levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume293
Issue number4
DOIs
StatePublished - Oct 1 2007

Fingerprint

Catalase
Antioxidants
Pulmonary Hypertension
Lung
Enzymes
Superoxides
Superoxide Dismutase
Oxidants
Hydrogen Peroxide
Reactive Oxygen Species
Proteins
Oxidative Stress
Western Blotting
Transplants

Keywords

  • Catalase
  • Congenital heart disease
  • Superoxide dismutase

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology

Cite this

Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. / Sharma, Shruti; Grobe, Albert C.; Wiseman, Dean A.; Kumar, Sanjiv; Englaish, Manal; Najwer, Ida; Benavidez, Eileen; Oishi, Peter; Azakie, Anthony; Fineman, Jeffrey R.; Black, Stephen Matthew.

In: American Journal of Physiology - Lung Cellular and Molecular Physiology, Vol. 293, No. 4, 01.10.2007.

Research output: Contribution to journalArticle

Sharma, Shruti ; Grobe, Albert C. ; Wiseman, Dean A. ; Kumar, Sanjiv ; Englaish, Manal ; Najwer, Ida ; Benavidez, Eileen ; Oishi, Peter ; Azakie, Anthony ; Fineman, Jeffrey R. ; Black, Stephen Matthew. / Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. In: American Journal of Physiology - Lung Cellular and Molecular Physiology. 2007 ; Vol. 293, No. 4.
@article{7f5acdc45f6c4ea0a8510707720e6904,
title = "Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow",
abstract = "Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H2O2) and superoxide (P < 0.05). Developmentally superoxide but not H2O2 levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.",
keywords = "Catalase, Congenital heart disease, Superoxide dismutase",
author = "Shruti Sharma and Grobe, {Albert C.} and Wiseman, {Dean A.} and Sanjiv Kumar and Manal Englaish and Ida Najwer and Eileen Benavidez and Peter Oishi and Anthony Azakie and Fineman, {Jeffrey R.} and Black, {Stephen Matthew}",
year = "2007",
month = "10",
day = "1",
doi = "10.1152/ajplung.00449.2006",
language = "English (US)",
volume = "293",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow

AU - Sharma, Shruti

AU - Grobe, Albert C.

AU - Wiseman, Dean A.

AU - Kumar, Sanjiv

AU - Englaish, Manal

AU - Najwer, Ida

AU - Benavidez, Eileen

AU - Oishi, Peter

AU - Azakie, Anthony

AU - Fineman, Jeffrey R.

AU - Black, Stephen Matthew

PY - 2007/10/1

Y1 - 2007/10/1

N2 - Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H2O2) and superoxide (P < 0.05). Developmentally superoxide but not H2O2 levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.

AB - Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H2O2) and superoxide (P < 0.05). Developmentally superoxide but not H2O2 levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.

KW - Catalase

KW - Congenital heart disease

KW - Superoxide dismutase

UR - http://www.scopus.com/inward/record.url?scp=35348895665&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35348895665&partnerID=8YFLogxK

U2 - 10.1152/ajplung.00449.2006

DO - 10.1152/ajplung.00449.2006

M3 - Article

C2 - 17631609

AN - SCOPUS:35348895665

VL - 293

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -