Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase

Naoko Iida, Vinata B Lokeshwar, Lilly Y W Bourguignon

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

CD45 belongs to a family of high molecular mass leukocyte glycoproteins. It contains both an intrinsic protein tyrosine phosphatase (PTPase) activity and a cytoskeleton binding site in its cytoplasmic domain. Certain cytoskeletal proteins, such as fodrin (a spectrin-like molecule), are known to play an important role in the regulation of CD45's PTPase activity. In this study we mapped the fodrin binding domain of CD45 by deleting various portions of the cytoplasmic region, followed by the expression of these truncated cDNAs using an in vitro transcription/translation system. The results of these experiments indicate that the CD45 fodrin binding domain resides between amino acids 825 and 939. Construction of a fusion protein encoding the region between amino acids 825 and 939 shows that this particular sequence itself is sufficient for fodrin binding. Further analyses indicate that the sequence (930EENKKKNRN939S) in CD45 has good sequence homology with the spectrin binding domain found in the MSP1 glycoprotein of the malarial parasite. Biochemical studies, using binding competition assays, and a synthetic peptide containing the sequence 930EENKKKNRN939S, support the conclusion that the sequence between amino acids 930 and 939 is a critical part of CD45's fodrin binding domain. Further analyses indicate that this sequence is also involved in the fodrin-induced up-regulation of CD45 PTPase activity. Therefore, we suggest that fodrin binding to this domain is required for the onset of CD45-mediated signal transduction and leukocyte activation.

Original languageEnglish (US)
Pages (from-to)28576-28583
Number of pages8
JournalJournal of Biological Chemistry
Volume269
Issue number46
StatePublished - Nov 18 1994
Externally publishedYes

Fingerprint

Phosphoric Monoester Hydrolases
Tyrosine
Leukocytes
Membranes
Protein Tyrosine Phosphatases
Spectrin
Amino Acids
Sequence Analysis
Glycoproteins
Merozoite Surface Protein 1
Signal transduction
Cytoskeletal Proteins
Molecular mass
Transcription
Sequence Homology
fodrin
Cytoskeleton
Amino Acid Sequence
Assays
Signal Transduction

ASJC Scopus subject areas

  • Biochemistry

Cite this

Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase. / Iida, Naoko; Lokeshwar, Vinata B; Bourguignon, Lilly Y W.

In: Journal of Biological Chemistry, Vol. 269, No. 46, 18.11.1994, p. 28576-28583.

Research output: Contribution to journalArticle

@article{1338808ae3be469ca23f1a2e9a6d8f07,
title = "Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase",
abstract = "CD45 belongs to a family of high molecular mass leukocyte glycoproteins. It contains both an intrinsic protein tyrosine phosphatase (PTPase) activity and a cytoskeleton binding site in its cytoplasmic domain. Certain cytoskeletal proteins, such as fodrin (a spectrin-like molecule), are known to play an important role in the regulation of CD45's PTPase activity. In this study we mapped the fodrin binding domain of CD45 by deleting various portions of the cytoplasmic region, followed by the expression of these truncated cDNAs using an in vitro transcription/translation system. The results of these experiments indicate that the CD45 fodrin binding domain resides between amino acids 825 and 939. Construction of a fusion protein encoding the region between amino acids 825 and 939 shows that this particular sequence itself is sufficient for fodrin binding. Further analyses indicate that the sequence (930EENKKKNRN939S) in CD45 has good sequence homology with the spectrin binding domain found in the MSP1 glycoprotein of the malarial parasite. Biochemical studies, using binding competition assays, and a synthetic peptide containing the sequence 930EENKKKNRN939S, support the conclusion that the sequence between amino acids 930 and 939 is a critical part of CD45's fodrin binding domain. Further analyses indicate that this sequence is also involved in the fodrin-induced up-regulation of CD45 PTPase activity. Therefore, we suggest that fodrin binding to this domain is required for the onset of CD45-mediated signal transduction and leukocyte activation.",
author = "Naoko Iida and Lokeshwar, {Vinata B} and Bourguignon, {Lilly Y W}",
year = "1994",
month = "11",
day = "18",
language = "English (US)",
volume = "269",
pages = "28576--28583",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "46",

}

TY - JOUR

T1 - Mapping the fodrin binding domain in CD45, a leukocyte membrane-associated tyrosine phosphatase

AU - Iida, Naoko

AU - Lokeshwar, Vinata B

AU - Bourguignon, Lilly Y W

PY - 1994/11/18

Y1 - 1994/11/18

N2 - CD45 belongs to a family of high molecular mass leukocyte glycoproteins. It contains both an intrinsic protein tyrosine phosphatase (PTPase) activity and a cytoskeleton binding site in its cytoplasmic domain. Certain cytoskeletal proteins, such as fodrin (a spectrin-like molecule), are known to play an important role in the regulation of CD45's PTPase activity. In this study we mapped the fodrin binding domain of CD45 by deleting various portions of the cytoplasmic region, followed by the expression of these truncated cDNAs using an in vitro transcription/translation system. The results of these experiments indicate that the CD45 fodrin binding domain resides between amino acids 825 and 939. Construction of a fusion protein encoding the region between amino acids 825 and 939 shows that this particular sequence itself is sufficient for fodrin binding. Further analyses indicate that the sequence (930EENKKKNRN939S) in CD45 has good sequence homology with the spectrin binding domain found in the MSP1 glycoprotein of the malarial parasite. Biochemical studies, using binding competition assays, and a synthetic peptide containing the sequence 930EENKKKNRN939S, support the conclusion that the sequence between amino acids 930 and 939 is a critical part of CD45's fodrin binding domain. Further analyses indicate that this sequence is also involved in the fodrin-induced up-regulation of CD45 PTPase activity. Therefore, we suggest that fodrin binding to this domain is required for the onset of CD45-mediated signal transduction and leukocyte activation.

AB - CD45 belongs to a family of high molecular mass leukocyte glycoproteins. It contains both an intrinsic protein tyrosine phosphatase (PTPase) activity and a cytoskeleton binding site in its cytoplasmic domain. Certain cytoskeletal proteins, such as fodrin (a spectrin-like molecule), are known to play an important role in the regulation of CD45's PTPase activity. In this study we mapped the fodrin binding domain of CD45 by deleting various portions of the cytoplasmic region, followed by the expression of these truncated cDNAs using an in vitro transcription/translation system. The results of these experiments indicate that the CD45 fodrin binding domain resides between amino acids 825 and 939. Construction of a fusion protein encoding the region between amino acids 825 and 939 shows that this particular sequence itself is sufficient for fodrin binding. Further analyses indicate that the sequence (930EENKKKNRN939S) in CD45 has good sequence homology with the spectrin binding domain found in the MSP1 glycoprotein of the malarial parasite. Biochemical studies, using binding competition assays, and a synthetic peptide containing the sequence 930EENKKKNRN939S, support the conclusion that the sequence between amino acids 930 and 939 is a critical part of CD45's fodrin binding domain. Further analyses indicate that this sequence is also involved in the fodrin-induced up-regulation of CD45 PTPase activity. Therefore, we suggest that fodrin binding to this domain is required for the onset of CD45-mediated signal transduction and leukocyte activation.

UR - http://www.scopus.com/inward/record.url?scp=0028036692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028036692&partnerID=8YFLogxK

M3 - Article

C2 - 7961804

AN - SCOPUS:0028036692

VL - 269

SP - 28576

EP - 28583

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 46

ER -