Microcracks in dental porcelain and their behavior during multiple firing

John Rodway Mackert, A. L. Williams

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Dental porcelains rely on the high-thermal-expansion mineral leucite to elevate their bulk thermal expansion to levels compatible with dental PFM alloys. The microcracks that form around these leucite particles when cooled during porcelain manufacture are a potential source of change in bulk porcelain thermal expansion during fabrication of porcelain-fused-to-metal crowns and bridges. The purpose of the present study was to determine whether multiple firings of commercial dental porcelains could produce changes in microcrack density. Specimens of six commercial porcelains and the "Component No. 1" of the Weinstein patent were fabricated and subjected to 1, 2, 4, 8, and 16 firings. The microcrack densities were determined by quantitative stereology, whereby intersections of microcracks were counted with a test grid. The microcrack data were subjected to linear regression analysis and analysis of variance. The microcrack densities of four of the six porcelains and the Component No. 1 frit were not significantly affected by the number of firings (p > 0.05). One porcelain exhibited a weak but highly significant positive correlation between microcrack density and multiple firings (r2 = 0.24, p = 0.0003), while the remaining porcelain exhibited a weak but statistically significant negative correlation between microcrack density and multiple firings (r2 = 0.15, p = 0.006). The results of this study indicate that even for porcelains that exhibit a measurable change in microcrack density as a function of multiple firings, the magnitude of the increase or decrease in microcrack density after several firings is sufficiently small to cause only negligible shifts in porcelain bulk thermal expansion.

Original languageEnglish (US)
Pages (from-to)1484-1490
Number of pages7
JournalJournal of Dental Research
Volume75
Issue number7
StatePublished - Dec 1 1996

Fingerprint

Dental Porcelain
Hot Temperature
Dental Alloys
Crowns
Minerals
Linear Models
Analysis of Variance
Metals
Regression Analysis

Keywords

  • Ceramics
  • Dental porcelain
  • Leucite
  • Microcracking
  • Stereology

ASJC Scopus subject areas

  • Dentistry(all)

Cite this

Microcracks in dental porcelain and their behavior during multiple firing. / Mackert, John Rodway; Williams, A. L.

In: Journal of Dental Research, Vol. 75, No. 7, 01.12.1996, p. 1484-1490.

Research output: Contribution to journalArticle

@article{4c1b65eb51c443cd99db5f56452b9e4b,
title = "Microcracks in dental porcelain and their behavior during multiple firing",
abstract = "Dental porcelains rely on the high-thermal-expansion mineral leucite to elevate their bulk thermal expansion to levels compatible with dental PFM alloys. The microcracks that form around these leucite particles when cooled during porcelain manufacture are a potential source of change in bulk porcelain thermal expansion during fabrication of porcelain-fused-to-metal crowns and bridges. The purpose of the present study was to determine whether multiple firings of commercial dental porcelains could produce changes in microcrack density. Specimens of six commercial porcelains and the {"}Component No. 1{"} of the Weinstein patent were fabricated and subjected to 1, 2, 4, 8, and 16 firings. The microcrack densities were determined by quantitative stereology, whereby intersections of microcracks were counted with a test grid. The microcrack data were subjected to linear regression analysis and analysis of variance. The microcrack densities of four of the six porcelains and the Component No. 1 frit were not significantly affected by the number of firings (p > 0.05). One porcelain exhibited a weak but highly significant positive correlation between microcrack density and multiple firings (r2 = 0.24, p = 0.0003), while the remaining porcelain exhibited a weak but statistically significant negative correlation between microcrack density and multiple firings (r2 = 0.15, p = 0.006). The results of this study indicate that even for porcelains that exhibit a measurable change in microcrack density as a function of multiple firings, the magnitude of the increase or decrease in microcrack density after several firings is sufficiently small to cause only negligible shifts in porcelain bulk thermal expansion.",
keywords = "Ceramics, Dental porcelain, Leucite, Microcracking, Stereology",
author = "Mackert, {John Rodway} and Williams, {A. L.}",
year = "1996",
month = "12",
day = "1",
language = "English (US)",
volume = "75",
pages = "1484--1490",
journal = "Journal of Dental Research",
issn = "0022-0345",
publisher = "SAGE Publications Inc.",
number = "7",

}

TY - JOUR

T1 - Microcracks in dental porcelain and their behavior during multiple firing

AU - Mackert, John Rodway

AU - Williams, A. L.

PY - 1996/12/1

Y1 - 1996/12/1

N2 - Dental porcelains rely on the high-thermal-expansion mineral leucite to elevate their bulk thermal expansion to levels compatible with dental PFM alloys. The microcracks that form around these leucite particles when cooled during porcelain manufacture are a potential source of change in bulk porcelain thermal expansion during fabrication of porcelain-fused-to-metal crowns and bridges. The purpose of the present study was to determine whether multiple firings of commercial dental porcelains could produce changes in microcrack density. Specimens of six commercial porcelains and the "Component No. 1" of the Weinstein patent were fabricated and subjected to 1, 2, 4, 8, and 16 firings. The microcrack densities were determined by quantitative stereology, whereby intersections of microcracks were counted with a test grid. The microcrack data were subjected to linear regression analysis and analysis of variance. The microcrack densities of four of the six porcelains and the Component No. 1 frit were not significantly affected by the number of firings (p > 0.05). One porcelain exhibited a weak but highly significant positive correlation between microcrack density and multiple firings (r2 = 0.24, p = 0.0003), while the remaining porcelain exhibited a weak but statistically significant negative correlation between microcrack density and multiple firings (r2 = 0.15, p = 0.006). The results of this study indicate that even for porcelains that exhibit a measurable change in microcrack density as a function of multiple firings, the magnitude of the increase or decrease in microcrack density after several firings is sufficiently small to cause only negligible shifts in porcelain bulk thermal expansion.

AB - Dental porcelains rely on the high-thermal-expansion mineral leucite to elevate their bulk thermal expansion to levels compatible with dental PFM alloys. The microcracks that form around these leucite particles when cooled during porcelain manufacture are a potential source of change in bulk porcelain thermal expansion during fabrication of porcelain-fused-to-metal crowns and bridges. The purpose of the present study was to determine whether multiple firings of commercial dental porcelains could produce changes in microcrack density. Specimens of six commercial porcelains and the "Component No. 1" of the Weinstein patent were fabricated and subjected to 1, 2, 4, 8, and 16 firings. The microcrack densities were determined by quantitative stereology, whereby intersections of microcracks were counted with a test grid. The microcrack data were subjected to linear regression analysis and analysis of variance. The microcrack densities of four of the six porcelains and the Component No. 1 frit were not significantly affected by the number of firings (p > 0.05). One porcelain exhibited a weak but highly significant positive correlation between microcrack density and multiple firings (r2 = 0.24, p = 0.0003), while the remaining porcelain exhibited a weak but statistically significant negative correlation between microcrack density and multiple firings (r2 = 0.15, p = 0.006). The results of this study indicate that even for porcelains that exhibit a measurable change in microcrack density as a function of multiple firings, the magnitude of the increase or decrease in microcrack density after several firings is sufficiently small to cause only negligible shifts in porcelain bulk thermal expansion.

KW - Ceramics

KW - Dental porcelain

KW - Leucite

KW - Microcracking

KW - Stereology

UR - http://www.scopus.com/inward/record.url?scp=0030307204&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030307204&partnerID=8YFLogxK

M3 - Article

VL - 75

SP - 1484

EP - 1490

JO - Journal of Dental Research

JF - Journal of Dental Research

SN - 0022-0345

IS - 7

ER -