Molecular biology and reproduction

Paul G. McDonough

Research output: Contribution to journalReview article

Abstract

Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future refinement of these techniques combined with the ability to maintain genetic modification of these cells with recombinant vector technology will provide a definitive therapy for many single gene disorders, such as sickle cell anemia and thalassaemia. It is truly the challenge of the next century to decipher how these legions of newly discovered genes work, and to create a molecular language that can extend across all organisms.

Original languageEnglish (US)
Pages (from-to)12-21
Number of pages10
JournalKeio Journal of Medicine
Volume48
Issue number1
DOIs
StatePublished - Jan 1 1999

Fingerprint

Reproduction
Molecular Biology
Acids
Technology
Genes
Aptitude
Thalassemia
Molecular Pathology
Automation
Sickle Cell Anemia
Human Genome
Computational Biology
Saliva
Point Mutation
Genetic Therapy
Paraffin
Hair
Fetus
Language
Therapeutics

Keywords

  • Fundamental techniques
  • Molecular biology

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Molecular biology and reproduction. / McDonough, Paul G.

In: Keio Journal of Medicine, Vol. 48, No. 1, 01.01.1999, p. 12-21.

Research output: Contribution to journalReview article

McDonough, Paul G. / Molecular biology and reproduction. In: Keio Journal of Medicine. 1999 ; Vol. 48, No. 1. pp. 12-21.
@article{ac04d71ed65e4b458db368d8b049fa02,
title = "Molecular biology and reproduction",
abstract = "Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future refinement of these techniques combined with the ability to maintain genetic modification of these cells with recombinant vector technology will provide a definitive therapy for many single gene disorders, such as sickle cell anemia and thalassaemia. It is truly the challenge of the next century to decipher how these legions of newly discovered genes work, and to create a molecular language that can extend across all organisms.",
keywords = "Fundamental techniques, Molecular biology",
author = "McDonough, {Paul G.}",
year = "1999",
month = "1",
day = "1",
doi = "10.2302/kjm.48.12",
language = "English (US)",
volume = "48",
pages = "12--21",
journal = "Keio Journal of Medicine",
issn = "0022-9717",
publisher = "Keio University School of Medicine",
number = "1",

}

TY - JOUR

T1 - Molecular biology and reproduction

AU - McDonough, Paul G.

PY - 1999/1/1

Y1 - 1999/1/1

N2 - Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future refinement of these techniques combined with the ability to maintain genetic modification of these cells with recombinant vector technology will provide a definitive therapy for many single gene disorders, such as sickle cell anemia and thalassaemia. It is truly the challenge of the next century to decipher how these legions of newly discovered genes work, and to create a molecular language that can extend across all organisms.

AB - Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future refinement of these techniques combined with the ability to maintain genetic modification of these cells with recombinant vector technology will provide a definitive therapy for many single gene disorders, such as sickle cell anemia and thalassaemia. It is truly the challenge of the next century to decipher how these legions of newly discovered genes work, and to create a molecular language that can extend across all organisms.

KW - Fundamental techniques

KW - Molecular biology

UR - http://www.scopus.com/inward/record.url?scp=0033091901&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033091901&partnerID=8YFLogxK

U2 - 10.2302/kjm.48.12

DO - 10.2302/kjm.48.12

M3 - Review article

VL - 48

SP - 12

EP - 21

JO - Keio Journal of Medicine

JF - Keio Journal of Medicine

SN - 0022-9717

IS - 1

ER -