Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome

Mahmood S Mozaffari, Stephen W. Schaffer

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.

Original languageEnglish (US)
Pages (from-to)2253-2258
Number of pages6
JournalObesity
Volume16
Issue number10
DOIs
StatePublished - Oct 1 2008

Fingerprint

Myocardial Reperfusion Injury
Fats
Glucose
Reperfusion Injury
Glucose Intolerance
High Fat Diet
Dyslipidemias
Leptin

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Endocrinology, Diabetes and Metabolism
  • Endocrinology
  • Nutrition and Dietetics

Cite this

Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome. / Mozaffari, Mahmood S; Schaffer, Stephen W.

In: Obesity, Vol. 16, No. 10, 01.10.2008, p. 2253-2258.

Research output: Contribution to journalArticle

Mozaffari, Mahmood S ; Schaffer, Stephen W. / Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome. In: Obesity. 2008 ; Vol. 16, No. 10. pp. 2253-2258.
@article{5957d28a87ba454abbf5b23e71d29f40,
title = "Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome",
abstract = "Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.",
author = "Mozaffari, {Mahmood S} and Schaffer, {Stephen W.}",
year = "2008",
month = "10",
day = "1",
doi = "10.1038/oby.2008.356",
language = "English (US)",
volume = "16",
pages = "2253--2258",
journal = "Obesity",
issn = "1930-7381",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome

AU - Mozaffari, Mahmood S

AU - Schaffer, Stephen W.

PY - 2008/10/1

Y1 - 2008/10/1

N2 - Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.

AB - Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.

UR - http://www.scopus.com/inward/record.url?scp=53849142124&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=53849142124&partnerID=8YFLogxK

U2 - 10.1038/oby.2008.356

DO - 10.1038/oby.2008.356

M3 - Article

VL - 16

SP - 2253

EP - 2258

JO - Obesity

JF - Obesity

SN - 1930-7381

IS - 10

ER -