Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor

Weiwei Wang, W. Brian Reeves, Ganesan Ramesh

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

The cellular hallmark of kidney repair is a rapid proliferation of renal tubular epithelial cells ultimately leading to the restoration of nephron structure and function. Netrin-1 was discovered as a neural guidance cue and found to be expressed outside the nervous system, including in kidney. Previous work showed that netrin-1 is upregulated in response to ischemic injury and ameliorates ischemic injury. The objectives of this study were to determine the role of netrin-1 in renal tubular epithelial cell proliferation and migration in vitro. Real-time RT-PCR analysis showed that netrin-1 and its receptors UNC5B and neogenin are highly expressed in cultured mouse renal epithelial cells (TKPTS), whereas the expression of the Deleted in Colon Cancer (DCC), UNC5A, UNC5C, and UNC5D receptors is negligible or undetectable. Netrin-1 protein was induced in the edges of mechanical wounds in vitro. Netrin-1 increased TKPTS cell proliferation in a dose-dependent manner. The netrin-1-induced increase in TKPTS cell proliferation was completely prevented by small interfering RNA (siRNA) inhibition of UNC5B receptor but not UNC5C receptor expression. Netrin-1 also increased TKPTS cell migration in vitro, and this was also mediated through the UNC5B receptor. Netrin-1 increased the phosphorylation of Akt and ERK. Inhibition of phosphatidylinositol 3-kinase and MEK1/2 completely inhibited netrin-1-induced cell proliferation but not migration. These results indicate that netrin-1 increases renal tubular epithelial cell proliferation and migration through the UNC5B receptor. Moreover, the increase in cell proliferation, but not migration, was mediated via activation of Akt and ERK pathways.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume296
Issue number4
DOIs
StatePublished - Apr 1 2009

Fingerprint

Epithelial Cells
Kidney
Cell Proliferation
Cell Movement
Wounds and Injuries
netrin-1
Phosphatidylinositol 3-Kinase
MAP Kinase Signaling System
Nephrons
Colonic Neoplasms
Nervous System
Small Interfering RNA
Cues
Real-Time Polymerase Chain Reaction
Phosphorylation
In Vitro Techniques
Proteins

Keywords

  • Cell migration
  • Cell proliferation
  • Mitogen-activated protein kinase

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor. / Wang, Weiwei; Reeves, W. Brian; Ramesh, Ganesan.

In: American Journal of Physiology - Renal Physiology, Vol. 296, No. 4, 01.04.2009.

Research output: Contribution to journalArticle

@article{8744467a05f04a24ae032f3f6a10a67a,
title = "Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor",
abstract = "The cellular hallmark of kidney repair is a rapid proliferation of renal tubular epithelial cells ultimately leading to the restoration of nephron structure and function. Netrin-1 was discovered as a neural guidance cue and found to be expressed outside the nervous system, including in kidney. Previous work showed that netrin-1 is upregulated in response to ischemic injury and ameliorates ischemic injury. The objectives of this study were to determine the role of netrin-1 in renal tubular epithelial cell proliferation and migration in vitro. Real-time RT-PCR analysis showed that netrin-1 and its receptors UNC5B and neogenin are highly expressed in cultured mouse renal epithelial cells (TKPTS), whereas the expression of the Deleted in Colon Cancer (DCC), UNC5A, UNC5C, and UNC5D receptors is negligible or undetectable. Netrin-1 protein was induced in the edges of mechanical wounds in vitro. Netrin-1 increased TKPTS cell proliferation in a dose-dependent manner. The netrin-1-induced increase in TKPTS cell proliferation was completely prevented by small interfering RNA (siRNA) inhibition of UNC5B receptor but not UNC5C receptor expression. Netrin-1 also increased TKPTS cell migration in vitro, and this was also mediated through the UNC5B receptor. Netrin-1 increased the phosphorylation of Akt and ERK. Inhibition of phosphatidylinositol 3-kinase and MEK1/2 completely inhibited netrin-1-induced cell proliferation but not migration. These results indicate that netrin-1 increases renal tubular epithelial cell proliferation and migration through the UNC5B receptor. Moreover, the increase in cell proliferation, but not migration, was mediated via activation of Akt and ERK pathways.",
keywords = "Cell migration, Cell proliferation, Mitogen-activated protein kinase",
author = "Weiwei Wang and Reeves, {W. Brian} and Ganesan Ramesh",
year = "2009",
month = "4",
day = "1",
doi = "10.1152/ajprenal.90686.2008",
language = "English (US)",
volume = "296",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor

AU - Wang, Weiwei

AU - Reeves, W. Brian

AU - Ramesh, Ganesan

PY - 2009/4/1

Y1 - 2009/4/1

N2 - The cellular hallmark of kidney repair is a rapid proliferation of renal tubular epithelial cells ultimately leading to the restoration of nephron structure and function. Netrin-1 was discovered as a neural guidance cue and found to be expressed outside the nervous system, including in kidney. Previous work showed that netrin-1 is upregulated in response to ischemic injury and ameliorates ischemic injury. The objectives of this study were to determine the role of netrin-1 in renal tubular epithelial cell proliferation and migration in vitro. Real-time RT-PCR analysis showed that netrin-1 and its receptors UNC5B and neogenin are highly expressed in cultured mouse renal epithelial cells (TKPTS), whereas the expression of the Deleted in Colon Cancer (DCC), UNC5A, UNC5C, and UNC5D receptors is negligible or undetectable. Netrin-1 protein was induced in the edges of mechanical wounds in vitro. Netrin-1 increased TKPTS cell proliferation in a dose-dependent manner. The netrin-1-induced increase in TKPTS cell proliferation was completely prevented by small interfering RNA (siRNA) inhibition of UNC5B receptor but not UNC5C receptor expression. Netrin-1 also increased TKPTS cell migration in vitro, and this was also mediated through the UNC5B receptor. Netrin-1 increased the phosphorylation of Akt and ERK. Inhibition of phosphatidylinositol 3-kinase and MEK1/2 completely inhibited netrin-1-induced cell proliferation but not migration. These results indicate that netrin-1 increases renal tubular epithelial cell proliferation and migration through the UNC5B receptor. Moreover, the increase in cell proliferation, but not migration, was mediated via activation of Akt and ERK pathways.

AB - The cellular hallmark of kidney repair is a rapid proliferation of renal tubular epithelial cells ultimately leading to the restoration of nephron structure and function. Netrin-1 was discovered as a neural guidance cue and found to be expressed outside the nervous system, including in kidney. Previous work showed that netrin-1 is upregulated in response to ischemic injury and ameliorates ischemic injury. The objectives of this study were to determine the role of netrin-1 in renal tubular epithelial cell proliferation and migration in vitro. Real-time RT-PCR analysis showed that netrin-1 and its receptors UNC5B and neogenin are highly expressed in cultured mouse renal epithelial cells (TKPTS), whereas the expression of the Deleted in Colon Cancer (DCC), UNC5A, UNC5C, and UNC5D receptors is negligible or undetectable. Netrin-1 protein was induced in the edges of mechanical wounds in vitro. Netrin-1 increased TKPTS cell proliferation in a dose-dependent manner. The netrin-1-induced increase in TKPTS cell proliferation was completely prevented by small interfering RNA (siRNA) inhibition of UNC5B receptor but not UNC5C receptor expression. Netrin-1 also increased TKPTS cell migration in vitro, and this was also mediated through the UNC5B receptor. Netrin-1 increased the phosphorylation of Akt and ERK. Inhibition of phosphatidylinositol 3-kinase and MEK1/2 completely inhibited netrin-1-induced cell proliferation but not migration. These results indicate that netrin-1 increases renal tubular epithelial cell proliferation and migration through the UNC5B receptor. Moreover, the increase in cell proliferation, but not migration, was mediated via activation of Akt and ERK pathways.

KW - Cell migration

KW - Cell proliferation

KW - Mitogen-activated protein kinase

UR - http://www.scopus.com/inward/record.url?scp=65949105929&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65949105929&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.90686.2008

DO - 10.1152/ajprenal.90686.2008

M3 - Article

C2 - 19211685

AN - SCOPUS:65949105929

VL - 296

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -