Abstract
Objective This study evaluated the ability of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) to improve the stability of demineralized dentin collagen matrices when subjected to mechanical cycling by means of Chewing Simulation (CS). Methods Demineralized dentin disks were randomly assigned to four groups (N = 4): (1) immersion in artificial saliva at 37 °C for 30 days; (2) pre-treatment with 0.5 M EDC for 60 s, then stored as in Group 1; (3) CS challenge (50 N occlusal load, 30 s occlusal time plus 30 s with no load, for 30 days); (4) pre-treatment with 0.5 M EDC as in Group 2 and CS challenge as in Group 3. Collagen degradation was evaluated by sampling storage media for ICTP and CTX telopeptides. Results EDC treated specimens showed no significant telopeptides release, irrespective of the aging method. Cyclic stressing of EDC-untreated specimens caused significantly higher ICTP release at day 1, compared to static storage, while by days 3 and 4, the ICTP release in the cyclic group fell significantly below the static group, and then remained undetectable from 5 to 30 days. CTX release in the cyclic groups, on EDC-untreated control specimens was always lower than in the static group in days 1-4, and then fell to undetectable for 30 days. Significance This study showed that chewing stresses applied to control untreated demineralized dentin increased degradation of collagen in terms of CTX release, while collagen crosslinking agents may prevent dentin collagen degradation, irrespective of simulated occlusal function.
Original language | English (US) |
---|---|
Pages (from-to) | 192-199 |
Number of pages | 8 |
Journal | Dental Materials |
Volume | 32 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2016 |
Keywords
- Collagen(s)
- Cross-linking agent
- Demineralization
- Dentin
- Mastication Stress
- Matrix metalloproteinases (MMPs)
ASJC Scopus subject areas
- Materials Science(all)
- Dentistry(all)
- Mechanics of Materials