On the role of mechanosensitive mechanisms eliciting reactive hyperemia

Akos Koller, Zsolt Bagi

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles (∼130 μm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to ∼45 μm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80-10 -80 mmHg + 25-0-25 μl/min) increased both the peak and duration of RD (from ∼25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E-) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by NG-nitro-L-arginine methyl ester (L-NAME) or by E-. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional L-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume283
Issue number6 52-6
StatePublished - Dec 1 2002

Fingerprint

Hyperemia
Dilatation
NG-Nitroarginine Methyl Ester
Genistein
Arterioles
Nitric Oxide
Pressure
Gadolinium
Protein-Tyrosine Kinases
Endothelium
Cations
Skeletal Muscle
Hemodynamics

Keywords

  • Endothelium
  • Flow
  • Isolated arteriole
  • Nitric oxide
  • Pressure
  • Stretch
  • Tyrosine kinase

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

On the role of mechanosensitive mechanisms eliciting reactive hyperemia. / Koller, Akos; Bagi, Zsolt.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 283, No. 6 52-6, 01.12.2002.

Research output: Contribution to journalArticle

@article{93b1d3662fe34d789219a71b313cae6f,
title = "On the role of mechanosensitive mechanisms eliciting reactive hyperemia",
abstract = "We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles (∼130 μm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to ∼45 μm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80-10 -80 mmHg + 25-0-25 μl/min) increased both the peak and duration of RD (from ∼25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E-) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by NG-nitro-L-arginine methyl ester (L-NAME) or by E-. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional L-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.",
keywords = "Endothelium, Flow, Isolated arteriole, Nitric oxide, Pressure, Stretch, Tyrosine kinase",
author = "Akos Koller and Zsolt Bagi",
year = "2002",
month = "12",
day = "1",
language = "English (US)",
volume = "283",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6 52-6",

}

TY - JOUR

T1 - On the role of mechanosensitive mechanisms eliciting reactive hyperemia

AU - Koller, Akos

AU - Bagi, Zsolt

PY - 2002/12/1

Y1 - 2002/12/1

N2 - We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles (∼130 μm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to ∼45 μm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80-10 -80 mmHg + 25-0-25 μl/min) increased both the peak and duration of RD (from ∼25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E-) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by NG-nitro-L-arginine methyl ester (L-NAME) or by E-. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional L-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.

AB - We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles (∼130 μm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to ∼45 μm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80-10 -80 mmHg + 25-0-25 μl/min) increased both the peak and duration of RD (from ∼25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E-) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by NG-nitro-L-arginine methyl ester (L-NAME) or by E-. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional L-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.

KW - Endothelium

KW - Flow

KW - Isolated arteriole

KW - Nitric oxide

KW - Pressure

KW - Stretch

KW - Tyrosine kinase

UR - http://www.scopus.com/inward/record.url?scp=0036889889&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036889889&partnerID=8YFLogxK

M3 - Article

C2 - 12427591

AN - SCOPUS:0036889889

VL - 283

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6 52-6

ER -