Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats

Jefferson C. Frisbee, Kristopher G. Maier, David W Stepp

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxide synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca2+-activated K+ (KCa) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting KCa channels following increased intraluminal pressure.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume283
Issue number6 52-6
StatePublished - Dec 1 2002
Externally publishedYes

Fingerprint

Zucker Rats
Oxidants
Skeletal Muscle
Arteries
Peroxynitrous Acid
Blood Vessels
Calcium-Activated Potassium Channels
Pressure
Glycols
Vasoconstriction
Nitric Oxide Synthase
Superoxides
Catalase
Cytochrome P-450 Enzyme System
Superoxide Dismutase
Endothelium
Immunohistochemistry
Therapeutics

Keywords

  • Hypertension
  • Obesity
  • Reactive oxygen species
  • Regulation of vascular tone
  • Skeletal muscle microcirculation
  • Type II diabetes

ASJC Scopus subject areas

  • Physiology

Cite this

Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. / Frisbee, Jefferson C.; Maier, Kristopher G.; Stepp, David W.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 283, No. 6 52-6, 01.12.2002.

Research output: Contribution to journalArticle

@article{e4c38d78214b4b408d8ffe5e4497f9ec,
title = "Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats",
abstract = "This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxide synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca2+-activated K+ (KCa) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting KCa channels following increased intraluminal pressure.",
keywords = "Hypertension, Obesity, Reactive oxygen species, Regulation of vascular tone, Skeletal muscle microcirculation, Type II diabetes",
author = "Frisbee, {Jefferson C.} and Maier, {Kristopher G.} and Stepp, {David W}",
year = "2002",
month = "12",
day = "1",
language = "English (US)",
volume = "283",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6 52-6",

}

TY - JOUR

T1 - Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats

AU - Frisbee, Jefferson C.

AU - Maier, Kristopher G.

AU - Stepp, David W

PY - 2002/12/1

Y1 - 2002/12/1

N2 - This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxide synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca2+-activated K+ (KCa) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting KCa channels following increased intraluminal pressure.

AB - This study characterized myogenic activation of skeletal muscle (gracilis) resistance arteries from lean (LZR) and obese Zucker rats (OZR). Arteries from OZR exhibited increased myogenic activation versus LZR; this increase was impaired by endothelium denudation or nitric oxide synthase inhibition. Treatment of vessels with 17-octadecynoic acid impaired responses in both strains by comparable amounts. Dihydroethidine microfluorography indicated elevated vascular superoxide levels in OZR versus LZR; immunohistochemistry demonstrated elevated vascular nitrotyrosine levels in OZR, indicating increased peroxynitrite presence. Vessel treatment with oxidative radical scavengers (polythylene glycol-superoxide dismutase/catalase) or inhibition of Ca2+-activated K+ (KCa) channels (iberiotoxin) did not alter myogenic activation in LZR but normalized activation in OZR. Application of peroxynitrite to vessels of OZR caused a greater vasoconstriction versus LZR; the response was impaired in OZR by elevated intraluminal pressure and was abolished in both strains by iberiotoxin. These results suggest that enhanced myogenic activation of gracilis arteries of OZR versus LZR 1) is not due to alterations in cytochrome P-450 contribution, and 2) may be due to elevated peroxynitrite levels inhibiting KCa channels following increased intraluminal pressure.

KW - Hypertension

KW - Obesity

KW - Reactive oxygen species

KW - Regulation of vascular tone

KW - Skeletal muscle microcirculation

KW - Type II diabetes

UR - http://www.scopus.com/inward/record.url?scp=0036890319&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036890319&partnerID=8YFLogxK

M3 - Article

VL - 283

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6 52-6

ER -