Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10

Yaping Tu, Sergei Popov, Clive Slaughter, Elliott M. Ross

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys95 in RGS4, Cys66 in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys2 or Cys12. The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [3H]palmitate labeling of Cys95. Membrane-bound RGS4 is palmitoylated both at Cys95 and Cys2/12, but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys95 on RGS4 or Cys66 on RGS10 inhibits GAP activity 80-100% toward either Gα(i) or Gα(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity ≥20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Gα(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.

Original languageEnglish (US)
Pages (from-to)38260-38267
Number of pages8
JournalJournal of Biological Chemistry
Volume274
Issue number53
DOIs
StatePublished - Dec 31 1999

Fingerprint

GTP-Binding Protein Regulators
Lipoylation
GTPase-Activating Proteins
GTP Phosphohydrolases
GTP-Binding Proteins
Cysteine
RGS Proteins
Assays
Palmitoyl Coenzyme A
Palmitates
Sf9 Cells
Labeling
Protein Domains
Membranes
Mutation

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. / Tu, Yaping; Popov, Sergei; Slaughter, Clive; Ross, Elliott M.

In: Journal of Biological Chemistry, Vol. 274, No. 53, 31.12.1999, p. 38260-38267.

Research output: Contribution to journalArticle

@article{3df4ac70bce446ef8dfbd890c942f9e0,
title = "Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10",
abstract = "RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys95 in RGS4, Cys66 in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys2 or Cys12. The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [3H]palmitate labeling of Cys95. Membrane-bound RGS4 is palmitoylated both at Cys95 and Cys2/12, but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys95 on RGS4 or Cys66 on RGS10 inhibits GAP activity 80-100{\%} toward either Gα(i) or Gα(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity ≥20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Gα(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.",
author = "Yaping Tu and Sergei Popov and Clive Slaughter and Ross, {Elliott M.}",
year = "1999",
month = "12",
day = "31",
doi = "10.1074/jbc.274.53.38260",
language = "English (US)",
volume = "274",
pages = "38260--38267",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "53",

}

TY - JOUR

T1 - Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10

AU - Tu, Yaping

AU - Popov, Sergei

AU - Slaughter, Clive

AU - Ross, Elliott M.

PY - 1999/12/31

Y1 - 1999/12/31

N2 - RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys95 in RGS4, Cys66 in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys2 or Cys12. The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [3H]palmitate labeling of Cys95. Membrane-bound RGS4 is palmitoylated both at Cys95 and Cys2/12, but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys95 on RGS4 or Cys66 on RGS10 inhibits GAP activity 80-100% toward either Gα(i) or Gα(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity ≥20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Gα(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.

AB - RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys95 in RGS4, Cys66 in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys2 or Cys12. The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [3H]palmitate labeling of Cys95. Membrane-bound RGS4 is palmitoylated both at Cys95 and Cys2/12, but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys95 on RGS4 or Cys66 on RGS10 inhibits GAP activity 80-100% toward either Gα(i) or Gα(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity ≥20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Gα(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.

UR - http://www.scopus.com/inward/record.url?scp=0033621480&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033621480&partnerID=8YFLogxK

U2 - 10.1074/jbc.274.53.38260

DO - 10.1074/jbc.274.53.38260

M3 - Article

C2 - 10608901

AN - SCOPUS:0033621480

VL - 274

SP - 38260

EP - 38267

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 53

ER -