PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery

Quan Yuan, William Andrew Yeudall, Hu Yang

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Surface modification of polyamidoamine (PAMAM) dendrimers with polyethylene glycol (PEG) often results in the decrease in their buffering capacity, which is essential for gene transfer. In this work, bis-aryl hydrazone bond, which possesses protonatable pyridine and amines, was explored as a new linkage for PEGylation of PAMAM dendrimers. PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with bis-aryl hydrazone (BAH) linkages were synthesized following a two-step procedure: activation of PAMAM dendrimer G4.0 and monofunctional methoxypolyethylene glycol amine (MW=5000 Da) with succinimidyl 4-hydrazinonicotinate acetone hydrazone (SANH) and succinimidyl 4-formylbenzoate (SFB), respectively, and coupling of SFB-activated PEG to SANH-activated G4.0 to generate PEGylated G4.0 with bis-aryl hydrazone linkages (G4.0-BAH-PEG). It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector even with a high degree of PEGylation (42 PEG chains per dendrimer). G4.0-BAH-PEG conjugates could complex with DNA plasmid tightly at low weight ratios and display dramatically improved cytocompatibility. According to gene transfection studies in 293T and HN12 cells, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection.

Original languageEnglish (US)
Pages (from-to)1940-1947
Number of pages8
JournalBiomacromolecules
Volume11
Issue number8
DOIs
StatePublished - Aug 9 2010

Fingerprint

Dendrimers
Hydrazones
Genes
Polyethylene glycols
Acetone
Amines
Gene transfer
Poly(amidoamine)
Glycols
Gene expression
Pyridine
Surface treatment
Plasmids
DNA
Chemical activation

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Cite this

PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. / Yuan, Quan; Yeudall, William Andrew; Yang, Hu.

In: Biomacromolecules, Vol. 11, No. 8, 09.08.2010, p. 1940-1947.

Research output: Contribution to journalArticle

@article{e3938dada49f4f68ac18c885ed0fe6de,
title = "PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery",
abstract = "Surface modification of polyamidoamine (PAMAM) dendrimers with polyethylene glycol (PEG) often results in the decrease in their buffering capacity, which is essential for gene transfer. In this work, bis-aryl hydrazone bond, which possesses protonatable pyridine and amines, was explored as a new linkage for PEGylation of PAMAM dendrimers. PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with bis-aryl hydrazone (BAH) linkages were synthesized following a two-step procedure: activation of PAMAM dendrimer G4.0 and monofunctional methoxypolyethylene glycol amine (MW=5000 Da) with succinimidyl 4-hydrazinonicotinate acetone hydrazone (SANH) and succinimidyl 4-formylbenzoate (SFB), respectively, and coupling of SFB-activated PEG to SANH-activated G4.0 to generate PEGylated G4.0 with bis-aryl hydrazone linkages (G4.0-BAH-PEG). It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector even with a high degree of PEGylation (42 PEG chains per dendrimer). G4.0-BAH-PEG conjugates could complex with DNA plasmid tightly at low weight ratios and display dramatically improved cytocompatibility. According to gene transfection studies in 293T and HN12 cells, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection.",
author = "Quan Yuan and Yeudall, {William Andrew} and Hu Yang",
year = "2010",
month = "8",
day = "9",
doi = "10.1021/bm100589g",
language = "English (US)",
volume = "11",
pages = "1940--1947",
journal = "Biomacromolecules",
issn = "1525-7797",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery

AU - Yuan, Quan

AU - Yeudall, William Andrew

AU - Yang, Hu

PY - 2010/8/9

Y1 - 2010/8/9

N2 - Surface modification of polyamidoamine (PAMAM) dendrimers with polyethylene glycol (PEG) often results in the decrease in their buffering capacity, which is essential for gene transfer. In this work, bis-aryl hydrazone bond, which possesses protonatable pyridine and amines, was explored as a new linkage for PEGylation of PAMAM dendrimers. PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with bis-aryl hydrazone (BAH) linkages were synthesized following a two-step procedure: activation of PAMAM dendrimer G4.0 and monofunctional methoxypolyethylene glycol amine (MW=5000 Da) with succinimidyl 4-hydrazinonicotinate acetone hydrazone (SANH) and succinimidyl 4-formylbenzoate (SFB), respectively, and coupling of SFB-activated PEG to SANH-activated G4.0 to generate PEGylated G4.0 with bis-aryl hydrazone linkages (G4.0-BAH-PEG). It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector even with a high degree of PEGylation (42 PEG chains per dendrimer). G4.0-BAH-PEG conjugates could complex with DNA plasmid tightly at low weight ratios and display dramatically improved cytocompatibility. According to gene transfection studies in 293T and HN12 cells, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection.

AB - Surface modification of polyamidoamine (PAMAM) dendrimers with polyethylene glycol (PEG) often results in the decrease in their buffering capacity, which is essential for gene transfer. In this work, bis-aryl hydrazone bond, which possesses protonatable pyridine and amines, was explored as a new linkage for PEGylation of PAMAM dendrimers. PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with bis-aryl hydrazone (BAH) linkages were synthesized following a two-step procedure: activation of PAMAM dendrimer G4.0 and monofunctional methoxypolyethylene glycol amine (MW=5000 Da) with succinimidyl 4-hydrazinonicotinate acetone hydrazone (SANH) and succinimidyl 4-formylbenzoate (SFB), respectively, and coupling of SFB-activated PEG to SANH-activated G4.0 to generate PEGylated G4.0 with bis-aryl hydrazone linkages (G4.0-BAH-PEG). It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector even with a high degree of PEGylation (42 PEG chains per dendrimer). G4.0-BAH-PEG conjugates could complex with DNA plasmid tightly at low weight ratios and display dramatically improved cytocompatibility. According to gene transfection studies in 293T and HN12 cells, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection.

UR - http://www.scopus.com/inward/record.url?scp=77955579970&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955579970&partnerID=8YFLogxK

U2 - 10.1021/bm100589g

DO - 10.1021/bm100589g

M3 - Article

C2 - 20593893

AN - SCOPUS:77955579970

VL - 11

SP - 1940

EP - 1947

JO - Biomacromolecules

JF - Biomacromolecules

SN - 1525-7797

IS - 8

ER -