Plasticity of airway cell proliferation and gene expression after acute naphthalene injury

B. R. Stripp, K. Maxson, R. Mera, Gurmukh Singh

Research output: Contribution to journalArticle

163 Citations (Scopus)

Abstract

The goal of this study was to determine the temporal and spatial sequence of events that accompany lung injury and repair after parenteral administration of the Clara cell-specific cytotoxicant, naphthalene. Changes in airway epithelial cells were evaluated by measuring alterations in the expression of markers for differentiated Clara cells (CYPIIF and Clara cell 10-kDa secretory protein, CC10), distal airway/alveolar type II cells (surfactant protein B; SP-B) and for cycling/proliferating cells (cyclin dependent kinase 1; CDK1). Naphthalene-induced Clara cell cytotoxicity resulted in the exfoliation of epithelial cells containing CC10 protein. This was accompanied by a dramatic reduction in the abundance of mRNA for CC10 and CYPIIF. Large numbers of CDK1 mRNA-positive cells were identified in and around bronchioles and terminal bronchioles 48 h after treatment. This cellular proliferation resulted in the population of airways by immature epithelial cells lacking normal levels of CC10 mRNA but overexpressing SP-B mRNA. Seventy-two hours after naphthalene treatment a reduction in CDK1 mRNA- positive cells was noted within bronchioles and terminal bronchioles at all locations, with the exception of airway bifurcations. At airway bifurcations CDK1 mRNA appeared to be more abundant at the 72-h time point than at 48 h. Comparison of these sections with serial sections probed for CC10 mRNA demonstrated a correlation between the expression of CDK1 and CC10 mRNA at bifurcations. Temporal increases in the abundance of CC10 mRNA observed at later time points were largely accounted for by the processive maturation of newly repopulated cells neighboring bifurcations in bronchioles. These studies identify spatially distinct populations of cells that act in concert to repopulate naphthalene-injured airways and support the notion that branch point cells play an important role in the maturation of newly regenerated airway epithelial cells after acute injury.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume269
Issue number6 13-6
StatePublished - Dec 1 1995
Externally publishedYes

Fingerprint

Cell Proliferation
Bronchioles
Gene Expression
Messenger RNA
Wounds and Injuries
Epithelial Cells
Pulmonary Surfactant-Associated Protein B
naphthalene
CDC2 Protein Kinase
Alveolar Epithelial Cells
Lung Injury
Population
Proteins

Keywords

  • Clara cell
  • airway epithelium
  • lung injury

ASJC Scopus subject areas

  • Physiology
  • Pulmonary and Respiratory Medicine
  • Physiology (medical)
  • Cell Biology

Cite this

Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. / Stripp, B. R.; Maxson, K.; Mera, R.; Singh, Gurmukh.

In: American Journal of Physiology - Lung Cellular and Molecular Physiology, Vol. 269, No. 6 13-6, 01.12.1995.

Research output: Contribution to journalArticle

@article{b59957e8109b4d3094337b7d70db907b,
title = "Plasticity of airway cell proliferation and gene expression after acute naphthalene injury",
abstract = "The goal of this study was to determine the temporal and spatial sequence of events that accompany lung injury and repair after parenteral administration of the Clara cell-specific cytotoxicant, naphthalene. Changes in airway epithelial cells were evaluated by measuring alterations in the expression of markers for differentiated Clara cells (CYPIIF and Clara cell 10-kDa secretory protein, CC10), distal airway/alveolar type II cells (surfactant protein B; SP-B) and for cycling/proliferating cells (cyclin dependent kinase 1; CDK1). Naphthalene-induced Clara cell cytotoxicity resulted in the exfoliation of epithelial cells containing CC10 protein. This was accompanied by a dramatic reduction in the abundance of mRNA for CC10 and CYPIIF. Large numbers of CDK1 mRNA-positive cells were identified in and around bronchioles and terminal bronchioles 48 h after treatment. This cellular proliferation resulted in the population of airways by immature epithelial cells lacking normal levels of CC10 mRNA but overexpressing SP-B mRNA. Seventy-two hours after naphthalene treatment a reduction in CDK1 mRNA- positive cells was noted within bronchioles and terminal bronchioles at all locations, with the exception of airway bifurcations. At airway bifurcations CDK1 mRNA appeared to be more abundant at the 72-h time point than at 48 h. Comparison of these sections with serial sections probed for CC10 mRNA demonstrated a correlation between the expression of CDK1 and CC10 mRNA at bifurcations. Temporal increases in the abundance of CC10 mRNA observed at later time points were largely accounted for by the processive maturation of newly repopulated cells neighboring bifurcations in bronchioles. These studies identify spatially distinct populations of cells that act in concert to repopulate naphthalene-injured airways and support the notion that branch point cells play an important role in the maturation of newly regenerated airway epithelial cells after acute injury.",
keywords = "Clara cell, airway epithelium, lung injury",
author = "Stripp, {B. R.} and K. Maxson and R. Mera and Gurmukh Singh",
year = "1995",
month = "12",
day = "1",
language = "English (US)",
volume = "269",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6 13-6",

}

TY - JOUR

T1 - Plasticity of airway cell proliferation and gene expression after acute naphthalene injury

AU - Stripp, B. R.

AU - Maxson, K.

AU - Mera, R.

AU - Singh, Gurmukh

PY - 1995/12/1

Y1 - 1995/12/1

N2 - The goal of this study was to determine the temporal and spatial sequence of events that accompany lung injury and repair after parenteral administration of the Clara cell-specific cytotoxicant, naphthalene. Changes in airway epithelial cells were evaluated by measuring alterations in the expression of markers for differentiated Clara cells (CYPIIF and Clara cell 10-kDa secretory protein, CC10), distal airway/alveolar type II cells (surfactant protein B; SP-B) and for cycling/proliferating cells (cyclin dependent kinase 1; CDK1). Naphthalene-induced Clara cell cytotoxicity resulted in the exfoliation of epithelial cells containing CC10 protein. This was accompanied by a dramatic reduction in the abundance of mRNA for CC10 and CYPIIF. Large numbers of CDK1 mRNA-positive cells were identified in and around bronchioles and terminal bronchioles 48 h after treatment. This cellular proliferation resulted in the population of airways by immature epithelial cells lacking normal levels of CC10 mRNA but overexpressing SP-B mRNA. Seventy-two hours after naphthalene treatment a reduction in CDK1 mRNA- positive cells was noted within bronchioles and terminal bronchioles at all locations, with the exception of airway bifurcations. At airway bifurcations CDK1 mRNA appeared to be more abundant at the 72-h time point than at 48 h. Comparison of these sections with serial sections probed for CC10 mRNA demonstrated a correlation between the expression of CDK1 and CC10 mRNA at bifurcations. Temporal increases in the abundance of CC10 mRNA observed at later time points were largely accounted for by the processive maturation of newly repopulated cells neighboring bifurcations in bronchioles. These studies identify spatially distinct populations of cells that act in concert to repopulate naphthalene-injured airways and support the notion that branch point cells play an important role in the maturation of newly regenerated airway epithelial cells after acute injury.

AB - The goal of this study was to determine the temporal and spatial sequence of events that accompany lung injury and repair after parenteral administration of the Clara cell-specific cytotoxicant, naphthalene. Changes in airway epithelial cells were evaluated by measuring alterations in the expression of markers for differentiated Clara cells (CYPIIF and Clara cell 10-kDa secretory protein, CC10), distal airway/alveolar type II cells (surfactant protein B; SP-B) and for cycling/proliferating cells (cyclin dependent kinase 1; CDK1). Naphthalene-induced Clara cell cytotoxicity resulted in the exfoliation of epithelial cells containing CC10 protein. This was accompanied by a dramatic reduction in the abundance of mRNA for CC10 and CYPIIF. Large numbers of CDK1 mRNA-positive cells were identified in and around bronchioles and terminal bronchioles 48 h after treatment. This cellular proliferation resulted in the population of airways by immature epithelial cells lacking normal levels of CC10 mRNA but overexpressing SP-B mRNA. Seventy-two hours after naphthalene treatment a reduction in CDK1 mRNA- positive cells was noted within bronchioles and terminal bronchioles at all locations, with the exception of airway bifurcations. At airway bifurcations CDK1 mRNA appeared to be more abundant at the 72-h time point than at 48 h. Comparison of these sections with serial sections probed for CC10 mRNA demonstrated a correlation between the expression of CDK1 and CC10 mRNA at bifurcations. Temporal increases in the abundance of CC10 mRNA observed at later time points were largely accounted for by the processive maturation of newly repopulated cells neighboring bifurcations in bronchioles. These studies identify spatially distinct populations of cells that act in concert to repopulate naphthalene-injured airways and support the notion that branch point cells play an important role in the maturation of newly regenerated airway epithelial cells after acute injury.

KW - Clara cell

KW - airway epithelium

KW - lung injury

UR - http://www.scopus.com/inward/record.url?scp=0029584831&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029584831&partnerID=8YFLogxK

M3 - Article

VL - 269

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6 13-6

ER -