Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis

V. B. Lokeshwar, L. Y.W. Bourguignon

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

In this study, we have investigated the biosynthesis and processing of GP85 (Pgp-1/CD44), a lymphoma transmembrane glycoprotein known to contain ankyrin-binding site(s). Using a standard pulse-chase protocol, we have detected a 52-kDa polypeptide precursor (p52) within the first 5 min of pulse labeling which contains a high mannose-type N-linked oligosaccharide chains. The conversion of p52 to GP85 requires further glycosylation (both complex type N-linked and O-linked) which takes place in the Golgi complex within 10-20 min after p52 is synthesized. GP85 is then incorporated into the plasma membrane where its turnover rate is relatively slow, a t( 1/2 ) of approximately 8 h. Following tunicamycin treatment, we have detected two other precursor proteins: p42 which is unglycosylated and p58 which is O-glycosylated. p42 appears to be an immediate precursor of p52 because p52 is converted to p42 upon deglycosylation. Therefore, the biosynthesis of GP85 appears to occur in the following sequence: p42 → p52 → GP85. Further analysis reveals that all of the GP85 precursors (i.e. p42, p52, and p58) contain ankyrin-binding site(s). Chemical composition analysis of GP85 indicates that this molecule contains approximately 3 N-linked and 4-5 O-linked oligosaccharide chains. Although neither N-glycosylation nor O-glycosylation appears to play an important role in the formation of ankyrin-binding site(s), O-glycosylation (and to a lesser extent N-glycosylation) of GP85 is required for T-lymphoma cell surface interaction with both collagen and hyaluronic acid. These findings suggest that GP85 (Pgp-1/CD44) and its biosynthetic precursors play a pivotal role in regulating adhesion functions such as lymphocyte homing and binding to the extracellular matrix.

Original languageEnglish (US)
Pages (from-to)17983-17989
Number of pages7
JournalJournal of Biological Chemistry
Volume266
Issue number27
StatePublished - Nov 8 1991

Fingerprint

Ankyrins
Glycosylation
Biosynthesis
Post Translational Protein Processing
Lymphoma
Binding Sites
Membranes
Proteins
Oligosaccharides
Tunicamycin
Protein Precursors
Lymphocytes
Golgi Apparatus
Hyaluronic Acid
Cell membranes
Mannose
Cell Communication
Labeling
Extracellular Matrix
Glycoproteins

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{b3451497c2654c428311ce0eb60b7e1c,
title = "Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis",
abstract = "In this study, we have investigated the biosynthesis and processing of GP85 (Pgp-1/CD44), a lymphoma transmembrane glycoprotein known to contain ankyrin-binding site(s). Using a standard pulse-chase protocol, we have detected a 52-kDa polypeptide precursor (p52) within the first 5 min of pulse labeling which contains a high mannose-type N-linked oligosaccharide chains. The conversion of p52 to GP85 requires further glycosylation (both complex type N-linked and O-linked) which takes place in the Golgi complex within 10-20 min after p52 is synthesized. GP85 is then incorporated into the plasma membrane where its turnover rate is relatively slow, a t( 1/2 ) of approximately 8 h. Following tunicamycin treatment, we have detected two other precursor proteins: p42 which is unglycosylated and p58 which is O-glycosylated. p42 appears to be an immediate precursor of p52 because p52 is converted to p42 upon deglycosylation. Therefore, the biosynthesis of GP85 appears to occur in the following sequence: p42 → p52 → GP85. Further analysis reveals that all of the GP85 precursors (i.e. p42, p52, and p58) contain ankyrin-binding site(s). Chemical composition analysis of GP85 indicates that this molecule contains approximately 3 N-linked and 4-5 O-linked oligosaccharide chains. Although neither N-glycosylation nor O-glycosylation appears to play an important role in the formation of ankyrin-binding site(s), O-glycosylation (and to a lesser extent N-glycosylation) of GP85 is required for T-lymphoma cell surface interaction with both collagen and hyaluronic acid. These findings suggest that GP85 (Pgp-1/CD44) and its biosynthetic precursors play a pivotal role in regulating adhesion functions such as lymphocyte homing and binding to the extracellular matrix.",
author = "Lokeshwar, {V. B.} and Bourguignon, {L. Y.W.}",
year = "1991",
month = "11",
day = "8",
language = "English (US)",
volume = "266",
pages = "17983--17989",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "27",

}

TY - JOUR

T1 - Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis

AU - Lokeshwar, V. B.

AU - Bourguignon, L. Y.W.

PY - 1991/11/8

Y1 - 1991/11/8

N2 - In this study, we have investigated the biosynthesis and processing of GP85 (Pgp-1/CD44), a lymphoma transmembrane glycoprotein known to contain ankyrin-binding site(s). Using a standard pulse-chase protocol, we have detected a 52-kDa polypeptide precursor (p52) within the first 5 min of pulse labeling which contains a high mannose-type N-linked oligosaccharide chains. The conversion of p52 to GP85 requires further glycosylation (both complex type N-linked and O-linked) which takes place in the Golgi complex within 10-20 min after p52 is synthesized. GP85 is then incorporated into the plasma membrane where its turnover rate is relatively slow, a t( 1/2 ) of approximately 8 h. Following tunicamycin treatment, we have detected two other precursor proteins: p42 which is unglycosylated and p58 which is O-glycosylated. p42 appears to be an immediate precursor of p52 because p52 is converted to p42 upon deglycosylation. Therefore, the biosynthesis of GP85 appears to occur in the following sequence: p42 → p52 → GP85. Further analysis reveals that all of the GP85 precursors (i.e. p42, p52, and p58) contain ankyrin-binding site(s). Chemical composition analysis of GP85 indicates that this molecule contains approximately 3 N-linked and 4-5 O-linked oligosaccharide chains. Although neither N-glycosylation nor O-glycosylation appears to play an important role in the formation of ankyrin-binding site(s), O-glycosylation (and to a lesser extent N-glycosylation) of GP85 is required for T-lymphoma cell surface interaction with both collagen and hyaluronic acid. These findings suggest that GP85 (Pgp-1/CD44) and its biosynthetic precursors play a pivotal role in regulating adhesion functions such as lymphocyte homing and binding to the extracellular matrix.

AB - In this study, we have investigated the biosynthesis and processing of GP85 (Pgp-1/CD44), a lymphoma transmembrane glycoprotein known to contain ankyrin-binding site(s). Using a standard pulse-chase protocol, we have detected a 52-kDa polypeptide precursor (p52) within the first 5 min of pulse labeling which contains a high mannose-type N-linked oligosaccharide chains. The conversion of p52 to GP85 requires further glycosylation (both complex type N-linked and O-linked) which takes place in the Golgi complex within 10-20 min after p52 is synthesized. GP85 is then incorporated into the plasma membrane where its turnover rate is relatively slow, a t( 1/2 ) of approximately 8 h. Following tunicamycin treatment, we have detected two other precursor proteins: p42 which is unglycosylated and p58 which is O-glycosylated. p42 appears to be an immediate precursor of p52 because p52 is converted to p42 upon deglycosylation. Therefore, the biosynthesis of GP85 appears to occur in the following sequence: p42 → p52 → GP85. Further analysis reveals that all of the GP85 precursors (i.e. p42, p52, and p58) contain ankyrin-binding site(s). Chemical composition analysis of GP85 indicates that this molecule contains approximately 3 N-linked and 4-5 O-linked oligosaccharide chains. Although neither N-glycosylation nor O-glycosylation appears to play an important role in the formation of ankyrin-binding site(s), O-glycosylation (and to a lesser extent N-glycosylation) of GP85 is required for T-lymphoma cell surface interaction with both collagen and hyaluronic acid. These findings suggest that GP85 (Pgp-1/CD44) and its biosynthetic precursors play a pivotal role in regulating adhesion functions such as lymphocyte homing and binding to the extracellular matrix.

UR - http://www.scopus.com/inward/record.url?scp=0025949195&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025949195&partnerID=8YFLogxK

M3 - Article

C2 - 1833390

AN - SCOPUS:0025949195

VL - 266

SP - 17983

EP - 17989

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 27

ER -