Postural control during eyes closed versus open in the dark: Are they the same?

R K Chong, B Gibson, S Horton, A Lee, J Mellinger, K H Lee

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

open in the dark is different and more difficult than eyes closed because the brain continues to process visual inputs in the dark when the eyes are open. On the other hand, when the eyes are closed, the visual system does not signal incongruent information with which the brain must compare the other sensory sys- tems. A variety of cognitive (subtracting backwards by seven as quickly and accurately as possible) and sup- port surface (fixed versus sway-referenced) conditions were used to probe the neural mechanisms underlying the sensory organization processes in healthy young adults. Peak-to-peak anteroposterior sway performance revealed two dissociated components of the treatment effects. The first component came from the visuospatial factor. Balance control during eye closure and eyes open in the dark were found to be similar but poorer than baseline condition (eyes open under typical lighting). The second component was the effect of task difficulty in which balance control in the sway-ref- erenced condition was worse compared to fixed support during eye closure or eyes open in the dark. Analyses of the cognitive performance also revealed different un- derlying neural mechanisms of the experimental con- ditions. Subtraction speed under the fixed support surface condition was similar among all the conditions but was faster with eyes closed during the sway-ref- erenced support surface condition. Accuracy was not affected among the visual and surface conditions. We conclude that sensory processing load with eyes closed is lower than eyes open in the dark, thereby allowing cognitive performance to proceed more efficiently. Performing a difficult subtraction task with eyes closed may afford a decrease in dual-task interference since similar brain areas, particularly the parietal region, are involved in both tasks. The results are discussed with reference to clinical application and spatial dis- orientation in aviation.
Original languageEnglish
Pages (from-to)126-132
JournalWorld Journal of Neuroscience
Volume2
StatePublished - 2012

Fingerprint

Brain
Aviation
Parietal Lobe
Lighting
Young Adult
Therapeutics

Cite this

Chong, R. K., Gibson, B., Horton, S., Lee, A., Mellinger, J., & Lee, K. H. (2012). Postural control during eyes closed versus open in the dark: Are they the same? World Journal of Neuroscience, 2, 126-132.

Postural control during eyes closed versus open in the dark: Are they the same? / Chong, R K; Gibson, B; Horton, S; Lee, A; Mellinger, J; Lee, K H.

In: World Journal of Neuroscience, Vol. 2, 2012, p. 126-132.

Research output: Contribution to journalArticle

Chong, RK, Gibson, B, Horton, S, Lee, A, Mellinger, J & Lee, KH 2012, 'Postural control during eyes closed versus open in the dark: Are they the same?', World Journal of Neuroscience, vol. 2, pp. 126-132.
Chong, R K ; Gibson, B ; Horton, S ; Lee, A ; Mellinger, J ; Lee, K H. / Postural control during eyes closed versus open in the dark: Are they the same?. In: World Journal of Neuroscience. 2012 ; Vol. 2. pp. 126-132.
@article{4051fd48b4e74441a52e274f46473474,
title = "Postural control during eyes closed versus open in the dark: Are they the same?",
abstract = "open in the dark is different and more difficult than eyes closed because the brain continues to process visual inputs in the dark when the eyes are open. On the other hand, when the eyes are closed, the visual system does not signal incongruent information with which the brain must compare the other sensory sys- tems. A variety of cognitive (subtracting backwards by seven as quickly and accurately as possible) and sup- port surface (fixed versus sway-referenced) conditions were used to probe the neural mechanisms underlying the sensory organization processes in healthy young adults. Peak-to-peak anteroposterior sway performance revealed two dissociated components of the treatment effects. The first component came from the visuospatial factor. Balance control during eye closure and eyes open in the dark were found to be similar but poorer than baseline condition (eyes open under typical lighting). The second component was the effect of task difficulty in which balance control in the sway-ref- erenced condition was worse compared to fixed support during eye closure or eyes open in the dark. Analyses of the cognitive performance also revealed different un- derlying neural mechanisms of the experimental con- ditions. Subtraction speed under the fixed support surface condition was similar among all the conditions but was faster with eyes closed during the sway-ref- erenced support surface condition. Accuracy was not affected among the visual and surface conditions. We conclude that sensory processing load with eyes closed is lower than eyes open in the dark, thereby allowing cognitive performance to proceed more efficiently. Performing a difficult subtraction task with eyes closed may afford a decrease in dual-task interference since similar brain areas, particularly the parietal region, are involved in both tasks. The results are discussed with reference to clinical application and spatial dis- orientation in aviation.",
author = "Chong, {R K} and B Gibson and S Horton and A Lee and J Mellinger and Lee, {K H}",
year = "2012",
language = "English",
volume = "2",
pages = "126--132",
journal = "World Journal of Neuroscience",

}

TY - JOUR

T1 - Postural control during eyes closed versus open in the dark: Are they the same?

AU - Chong, R K

AU - Gibson, B

AU - Horton, S

AU - Lee, A

AU - Mellinger, J

AU - Lee, K H

PY - 2012

Y1 - 2012

N2 - open in the dark is different and more difficult than eyes closed because the brain continues to process visual inputs in the dark when the eyes are open. On the other hand, when the eyes are closed, the visual system does not signal incongruent information with which the brain must compare the other sensory sys- tems. A variety of cognitive (subtracting backwards by seven as quickly and accurately as possible) and sup- port surface (fixed versus sway-referenced) conditions were used to probe the neural mechanisms underlying the sensory organization processes in healthy young adults. Peak-to-peak anteroposterior sway performance revealed two dissociated components of the treatment effects. The first component came from the visuospatial factor. Balance control during eye closure and eyes open in the dark were found to be similar but poorer than baseline condition (eyes open under typical lighting). The second component was the effect of task difficulty in which balance control in the sway-ref- erenced condition was worse compared to fixed support during eye closure or eyes open in the dark. Analyses of the cognitive performance also revealed different un- derlying neural mechanisms of the experimental con- ditions. Subtraction speed under the fixed support surface condition was similar among all the conditions but was faster with eyes closed during the sway-ref- erenced support surface condition. Accuracy was not affected among the visual and surface conditions. We conclude that sensory processing load with eyes closed is lower than eyes open in the dark, thereby allowing cognitive performance to proceed more efficiently. Performing a difficult subtraction task with eyes closed may afford a decrease in dual-task interference since similar brain areas, particularly the parietal region, are involved in both tasks. The results are discussed with reference to clinical application and spatial dis- orientation in aviation.

AB - open in the dark is different and more difficult than eyes closed because the brain continues to process visual inputs in the dark when the eyes are open. On the other hand, when the eyes are closed, the visual system does not signal incongruent information with which the brain must compare the other sensory sys- tems. A variety of cognitive (subtracting backwards by seven as quickly and accurately as possible) and sup- port surface (fixed versus sway-referenced) conditions were used to probe the neural mechanisms underlying the sensory organization processes in healthy young adults. Peak-to-peak anteroposterior sway performance revealed two dissociated components of the treatment effects. The first component came from the visuospatial factor. Balance control during eye closure and eyes open in the dark were found to be similar but poorer than baseline condition (eyes open under typical lighting). The second component was the effect of task difficulty in which balance control in the sway-ref- erenced condition was worse compared to fixed support during eye closure or eyes open in the dark. Analyses of the cognitive performance also revealed different un- derlying neural mechanisms of the experimental con- ditions. Subtraction speed under the fixed support surface condition was similar among all the conditions but was faster with eyes closed during the sway-ref- erenced support surface condition. Accuracy was not affected among the visual and surface conditions. We conclude that sensory processing load with eyes closed is lower than eyes open in the dark, thereby allowing cognitive performance to proceed more efficiently. Performing a difficult subtraction task with eyes closed may afford a decrease in dual-task interference since similar brain areas, particularly the parietal region, are involved in both tasks. The results are discussed with reference to clinical application and spatial dis- orientation in aviation.

M3 - Article

VL - 2

SP - 126

EP - 132

JO - World Journal of Neuroscience

JF - World Journal of Neuroscience

ER -