Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk

Quanguang Zhang, Rui Min Wang, Dong Han, Li Cai Yang, Jie Li, Darrell W Brann

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced pro-survival signaling (P-CREB and Bcl-2 induction) and attenuation of pro-death signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance.

Original languageEnglish (US)
Pages (from-to)205-212
Number of pages8
JournalNeuroscience Research
Volume63
Issue number3
DOIs
StatePublished - Mar 1 2009

Fingerprint

N-Methyl-D-Aspartate Receptors
Brain Ischemia
Hippocampus
Dizocilpine Maleate
Down-Regulation
Phosphorylation
Ischemic Preconditioning
MAP Kinase Signaling System
Mitogen-Activated Protein Kinase Kinases
N-Methylaspartate
Ischemia
Western Blotting
Immunohistochemistry
Neuroprotection

Keywords

  • Cell signaling
  • Global cerebral ischemia
  • Hippocampus

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. / Zhang, Quanguang; Wang, Rui Min; Han, Dong; Yang, Li Cai; Li, Jie; Brann, Darrell W.

In: Neuroscience Research, Vol. 63, No. 3, 01.03.2009, p. 205-212.

Research output: Contribution to journalArticle

@article{157a48ccf3594a3daab52c984e515ab0,
title = "Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk",
abstract = "Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced pro-survival signaling (P-CREB and Bcl-2 induction) and attenuation of pro-death signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance.",
keywords = "Cell signaling, Global cerebral ischemia, Hippocampus",
author = "Quanguang Zhang and Wang, {Rui Min} and Dong Han and Yang, {Li Cai} and Jie Li and Brann, {Darrell W}",
year = "2009",
month = "3",
day = "1",
doi = "10.1016/j.neures.2008.12.010",
language = "English (US)",
volume = "63",
pages = "205--212",
journal = "Neuroscience Research",
issn = "0168-0102",
publisher = "Elsevier Ireland Ltd",
number = "3",

}

TY - JOUR

T1 - Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk

AU - Zhang, Quanguang

AU - Wang, Rui Min

AU - Han, Dong

AU - Yang, Li Cai

AU - Li, Jie

AU - Brann, Darrell W

PY - 2009/3/1

Y1 - 2009/3/1

N2 - Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced pro-survival signaling (P-CREB and Bcl-2 induction) and attenuation of pro-death signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance.

AB - Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced pro-survival signaling (P-CREB and Bcl-2 induction) and attenuation of pro-death signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance.

KW - Cell signaling

KW - Global cerebral ischemia

KW - Hippocampus

UR - http://www.scopus.com/inward/record.url?scp=60049088113&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=60049088113&partnerID=8YFLogxK

U2 - 10.1016/j.neures.2008.12.010

DO - 10.1016/j.neures.2008.12.010

M3 - Article

VL - 63

SP - 205

EP - 212

JO - Neuroscience Research

JF - Neuroscience Research

SN - 0168-0102

IS - 3

ER -