Prostaglandin D2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in MDCK cells

Aihua Zhang, Zheng Dong, Tianxin Yang

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

In a separate study, we identified PGE2 as a potent inhibitor of TGF-β1-induced epithelial-mesenchymal transition (EMT) in cultured Madin-Darby canine kidney (MDCK) cells (Zhang A, Wang M-H, Dong Z, and Yang T. Am J Physiol Renal Physiol 291: F1323-F1331, 2006). This finding prompted us to examine the roles of other prostanoids: PGD2, PGF , PGI2, and thromboxane A2 (TXA 2). Treatment with 10 ng/ml TGF-β1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and activation of α-smooth muscle actin (α-SMA). Treatment with PGD2 remarkably preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of α-SMA. In contrast, PGF, carbocyclic thromboxane A2, PGI2 and its stable analog beraprost were without an effect. MDCK cells expressed DP1 and DP2 receptors; however, the effect of PGD2 was neither prevented by DP1 antagonist BW-A868C or DP2 antagonist BAY-u3405 nor was mimicked by DP1 agonist BW-245C. cAMP-elevating agents forskolin and 8-Br-cAMP blocked EMT. However, cAMP blockers H89 and Rp-cAMP failed to block the effect of PGD2. PGD2 did not seem to act via its metabolites as 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) levels in the medium following incubation with 3 μM PGD2 were well below the values predicted from the cross activity of the assay. Exposure to TGF-β1 induced a threefold increase in reactive oxygen species production that was completely abolished by PGD2. We conclude that 1) PGD2, but not PGI2, PGF, and TXA 2 inhibit EMT, 2) PGD2 inhibits EMT independently of DP1 and DP2 receptors, and 3) PGD2 exhibits antioxidant property which may, in part, account for the antifibrotic action of this PG.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume291
Issue number6
DOIs
StatePublished - Dec 14 2006

Fingerprint

Prostaglandin D2
Madin Darby Canine Kidney Cells
Epithelial-Mesenchymal Transition
Epoprostenol
Thromboxane A2
beraprost
Dinoprost
Cadherins
Prostaglandins F
Colforsin
Dinoprostone
Prostaglandins
Smooth Muscle
Actins
Cultured Cells
Reactive Oxygen Species
Antioxidants
Kidney

Keywords

  • Madin-Darby canine kidney cells
  • Reactive oxygen species
  • Transforming growth factor-β

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Prostaglandin D2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in MDCK cells. / Zhang, Aihua; Dong, Zheng; Yang, Tianxin.

In: American Journal of Physiology - Renal Physiology, Vol. 291, No. 6, 14.12.2006.

Research output: Contribution to journalArticle

@article{6b4f115e6c2446cfb3bd222d4ec98be3,
title = "Prostaglandin D2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in MDCK cells",
abstract = "In a separate study, we identified PGE2 as a potent inhibitor of TGF-β1-induced epithelial-mesenchymal transition (EMT) in cultured Madin-Darby canine kidney (MDCK) cells (Zhang A, Wang M-H, Dong Z, and Yang T. Am J Physiol Renal Physiol 291: F1323-F1331, 2006). This finding prompted us to examine the roles of other prostanoids: PGD2, PGF 2α, PGI2, and thromboxane A2 (TXA 2). Treatment with 10 ng/ml TGF-β1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and activation of α-smooth muscle actin (α-SMA). Treatment with PGD2 remarkably preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of α-SMA. In contrast, PGF2α, carbocyclic thromboxane A2, PGI2 and its stable analog beraprost were without an effect. MDCK cells expressed DP1 and DP2 receptors; however, the effect of PGD2 was neither prevented by DP1 antagonist BW-A868C or DP2 antagonist BAY-u3405 nor was mimicked by DP1 agonist BW-245C. cAMP-elevating agents forskolin and 8-Br-cAMP blocked EMT. However, cAMP blockers H89 and Rp-cAMP failed to block the effect of PGD2. PGD2 did not seem to act via its metabolites as 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) levels in the medium following incubation with 3 μM PGD2 were well below the values predicted from the cross activity of the assay. Exposure to TGF-β1 induced a threefold increase in reactive oxygen species production that was completely abolished by PGD2. We conclude that 1) PGD2, but not PGI2, PGF2α, and TXA 2 inhibit EMT, 2) PGD2 inhibits EMT independently of DP1 and DP2 receptors, and 3) PGD2 exhibits antioxidant property which may, in part, account for the antifibrotic action of this PG.",
keywords = "Madin-Darby canine kidney cells, Reactive oxygen species, Transforming growth factor-β",
author = "Aihua Zhang and Zheng Dong and Tianxin Yang",
year = "2006",
month = "12",
day = "14",
doi = "10.1152/ajprenal.00131.2006",
language = "English (US)",
volume = "291",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Prostaglandin D2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in MDCK cells

AU - Zhang, Aihua

AU - Dong, Zheng

AU - Yang, Tianxin

PY - 2006/12/14

Y1 - 2006/12/14

N2 - In a separate study, we identified PGE2 as a potent inhibitor of TGF-β1-induced epithelial-mesenchymal transition (EMT) in cultured Madin-Darby canine kidney (MDCK) cells (Zhang A, Wang M-H, Dong Z, and Yang T. Am J Physiol Renal Physiol 291: F1323-F1331, 2006). This finding prompted us to examine the roles of other prostanoids: PGD2, PGF 2α, PGI2, and thromboxane A2 (TXA 2). Treatment with 10 ng/ml TGF-β1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and activation of α-smooth muscle actin (α-SMA). Treatment with PGD2 remarkably preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of α-SMA. In contrast, PGF2α, carbocyclic thromboxane A2, PGI2 and its stable analog beraprost were without an effect. MDCK cells expressed DP1 and DP2 receptors; however, the effect of PGD2 was neither prevented by DP1 antagonist BW-A868C or DP2 antagonist BAY-u3405 nor was mimicked by DP1 agonist BW-245C. cAMP-elevating agents forskolin and 8-Br-cAMP blocked EMT. However, cAMP blockers H89 and Rp-cAMP failed to block the effect of PGD2. PGD2 did not seem to act via its metabolites as 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) levels in the medium following incubation with 3 μM PGD2 were well below the values predicted from the cross activity of the assay. Exposure to TGF-β1 induced a threefold increase in reactive oxygen species production that was completely abolished by PGD2. We conclude that 1) PGD2, but not PGI2, PGF2α, and TXA 2 inhibit EMT, 2) PGD2 inhibits EMT independently of DP1 and DP2 receptors, and 3) PGD2 exhibits antioxidant property which may, in part, account for the antifibrotic action of this PG.

AB - In a separate study, we identified PGE2 as a potent inhibitor of TGF-β1-induced epithelial-mesenchymal transition (EMT) in cultured Madin-Darby canine kidney (MDCK) cells (Zhang A, Wang M-H, Dong Z, and Yang T. Am J Physiol Renal Physiol 291: F1323-F1331, 2006). This finding prompted us to examine the roles of other prostanoids: PGD2, PGF 2α, PGI2, and thromboxane A2 (TXA 2). Treatment with 10 ng/ml TGF-β1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and activation of α-smooth muscle actin (α-SMA). Treatment with PGD2 remarkably preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of α-SMA. In contrast, PGF2α, carbocyclic thromboxane A2, PGI2 and its stable analog beraprost were without an effect. MDCK cells expressed DP1 and DP2 receptors; however, the effect of PGD2 was neither prevented by DP1 antagonist BW-A868C or DP2 antagonist BAY-u3405 nor was mimicked by DP1 agonist BW-245C. cAMP-elevating agents forskolin and 8-Br-cAMP blocked EMT. However, cAMP blockers H89 and Rp-cAMP failed to block the effect of PGD2. PGD2 did not seem to act via its metabolites as 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) levels in the medium following incubation with 3 μM PGD2 were well below the values predicted from the cross activity of the assay. Exposure to TGF-β1 induced a threefold increase in reactive oxygen species production that was completely abolished by PGD2. We conclude that 1) PGD2, but not PGI2, PGF2α, and TXA 2 inhibit EMT, 2) PGD2 inhibits EMT independently of DP1 and DP2 receptors, and 3) PGD2 exhibits antioxidant property which may, in part, account for the antifibrotic action of this PG.

KW - Madin-Darby canine kidney cells

KW - Reactive oxygen species

KW - Transforming growth factor-β

UR - http://www.scopus.com/inward/record.url?scp=33845365825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845365825&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00131.2006

DO - 10.1152/ajprenal.00131.2006

M3 - Article

C2 - 16896186

AN - SCOPUS:33845365825

VL - 291

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6

ER -