Protein Kinase G1 α Overexpression Increases Stem Cell Survival and Cardiac Function after Myocardial Infarction

Linlin Wang, Zeeshan Pasha, Shuyun Wang, Ning Li, Yuliang Feng, Gang Lu, Ronald W. Millard, Muhammad Ashraf

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Background: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α) could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs) contributing to regeneration of the ischemic heart. Methods and Results: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α (PKG1αMSCs).Controls included native MSCs (NatMSCs) and MSCs transduced with an empty vector (NullMSCs). PKG1α activity was increased approximately 20, 5 and 16 fold respectively in PKG1αMSCs. PKG1αMSCs showed improved survival under oxygen and glucose deprivation (OGD) which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in PKG1αMSCs compared to NatMSCs and NullMSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in PKG1αMSCs before and after OGD. In a female rat model of acute myocardial infarction, PKG1αMSCs group showed higher survival compared with NullMSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of PKG1αMSCs. At 4 weeks after transplantation, compared to DMEM group and NullMSCs group, PKG1αMSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05) and attenuated infarct size (27.2±2.5%, p<0.01). Heart function indices including ejection fraction (52.1±2.2%, p<0.01) and fractional shortening (24.8%±1.3%, p<0.01) were improved significantly in PKG1αMSCs group. Conclusion: Overexpression of PKG1α transgene could be a powerful approach to improve MSCs survival and their angiomyogenic potential in the infarcted heart.

Original languageEnglish (US)
Article numbere60087
JournalPloS one
Volume8
Issue number3
DOIs
StatePublished - Mar 25 2013

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Protein Kinase G1 α Overexpression Increases Stem Cell Survival and Cardiac Function after Myocardial Infarction'. Together they form a unique fingerprint.

Cite this