Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension

Rob H.P. Hilgers, R. Clinton Webb

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.

Original languageEnglish (US)
Pages (from-to)H2275-H2284
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume292
Issue number5
DOIs
StatePublished - May 2007
Externally publishedYes

Keywords

  • Calcium-activated potassium channels
  • Endothelium

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension'. Together they form a unique fingerprint.

Cite this