Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension

Rob H.P. Hilgers, R. Clinton Webb

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.

Original languageEnglish (US)
Pages (from-to)H2275-H2284
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume292
Issue number5
DOIs
StatePublished - May 1 2007

Fingerprint

Mesenteric Arteries
Angiotensin II
Hypertension
Proteins
Endothelium
Calcium-Activated Potassium Channels
Messenger RNA
Epoprostenol
Vasodilation
Catalase
Nitric Oxide
Arteries

Keywords

  • Calcium-activated potassium channels
  • Endothelium

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

@article{248c63b3b1274244bc10f2eeabaa86a6,
title = "Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension",
abstract = "Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.",
keywords = "Calcium-activated potassium channels, Endothelium",
author = "Hilgers, {Rob H.P.} and Webb, {R. Clinton}",
year = "2007",
month = "5",
day = "1",
doi = "10.1152/ajpheart.00949.2006",
language = "English (US)",
volume = "292",
pages = "H2275--H2284",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension

AU - Hilgers, Rob H.P.

AU - Webb, R. Clinton

PY - 2007/5/1

Y1 - 2007/5/1

N2 - Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.

AB - Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.

KW - Calcium-activated potassium channels

KW - Endothelium

UR - http://www.scopus.com/inward/record.url?scp=34250860659&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34250860659&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00949.2006

DO - 10.1152/ajpheart.00949.2006

M3 - Article

C2 - 17209000

AN - SCOPUS:34250860659

VL - 292

SP - H2275-H2284

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 5

ER -