Retinal expression of the serine protease matriptase-2 (tmprss6) and its role in retinal iron homeostasis

Jaya P. Gnana-Prakasam, Renee B. Baldowski, Sudha Ananth, Pamela Moore Martin, Sylvia B Smith, Vadivel Ganapathy

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Purpose: Matriptase-2 (also known as TMPRSS6) is a critical regulator of the iron-regulatory hormone hepcidin in the liver; matriptase-2 cleaves membrane-bound hemojuvelin and consequently alters bone morphogenetic protein (BMP) signaling. Hemojuvelin and hepcidin are expressed in the retina and play a critical role in retinal iron homeostasis. However, no information on the expression and function of matriptase-2 in the retina is available. The purpose of the present study was to examine the retinal expression of matriptase-2 and its role in retinal iron homeostasis. Methods: RT-PCR, quantitative PCR (qPCR), and immunofluorescence were used to analyze the expression of matriptase-2 and other iron-regulatory proteins in the mouse retina. Polarized localization of matriptase-2 in the RPE was evaluated using markers for the apical and basolateral membranes. Morphometric analysis of retinas from wild-type and matriptase-2 knockout (Tmprss6msk/msk) mice was also performed. Retinal iron status in Tmprss6msk/msk mice was evaluated by comparing the expression levels of ferritin and transferrin receptor 1 between wild-type and knockout mice. BMP signaling was monitored by the phosphorylation status of Smads1/5/8 and expression levels of Id1 while interleukin-6 signaling was monitored by the phosphorylation status of STAT3. Results: Matriptase-2 is expressed in the mouse retina with expression detectable in all retinal cell types. Expression of matriptase-2 is restricted to the apical membrane in the RPE where hemojuvelin, the substrate for matriptase-2, is also present. There is no marked difference in retinal morphology between wild-type mice and Tmprss6msk/msk mice, except minor differences in specific retinal layers. The knockout mouse retina is iron-deficient, demonstrable by downregulation of the iron-storage protein ferritin and upregulation of transferrin receptor 1 involved in iron uptake. Hepcidin is upregulated in Tmprss6msk/msk mouse retinas, particularly in the neural retina. BMP signaling is downregulated while interleukin-6 signaling is upregulated in Tmprss6msk/msk mouse retinas, suggesting that the upregulaton of hepcidin in knockout mouse retinas occurs through interleukin-6 signaling and not through BMP signaling. Conclusions: The iron-regulatory serine protease matriptase-2 is expressed in the retina, and absence of this enzyme leads to iron deficiency and increased expression of hemojuvelin and hepcidin in the retina. The upregulation of hepcidin expression in Tmprss6msk/msk mouse retinas does not occur via BMP signaling but likely via the proinflammatory cytokine interleukin-6. We conclude that matriptase-2 is a critical participant in retinal iron homeostasis.

Original languageEnglish (US)
Pages (from-to)561-574
Number of pages14
JournalMolecular Vision
Volume20
StatePublished - Apr 26 2014

ASJC Scopus subject areas

  • Ophthalmology

Fingerprint Dive into the research topics of 'Retinal expression of the serine protease matriptase-2 (tmprss6) and its role in retinal iron homeostasis'. Together they form a unique fingerprint.

  • Cite this