RGS10 negatively regulates platelet activation and thrombogenesis

Nicole R. Hensch, Zubair A. Karim, Kirk M. Druey, Malú G. Tansey, Fadi T. Khasawneh

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role (s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states.

Original languageEnglish (US)
Article numbere0165984
JournalPloS one
Volume11
Issue number11
DOIs
StatePublished - Nov 1 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'RGS10 negatively regulates platelet activation and thrombogenesis'. Together they form a unique fingerprint.

Cite this