Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation

Mario B Marrero, Bernhard Schieffer, Bing Li, Jimin Sun, Joyce B. Harp, Brian N. Ling

Research output: Contribution to journalArticle

200 Scopus citations

Abstract

In vascular smooth muscle cells, the induction of early growth response genes involves the Janus kinase (JAK)/signal transducer and activators of transcription (STAT) and the Ras/Raf-1/mitogen-activated protein kinase cascades. In the present study, we found that electroporation of antibodies against MEK1 or ERK1 abolished vascular smooth muscle cell proliferation in response to either platelet-derived growth factor or angiotensin II. However, anti-STAT1 or -STAT3 antibody electroporation abolished proliferative responses only to angiotensin II and not to platelet-derived growth factor. AG-490, a specific inhibitor of the JAK2 tyrosine kinase, prevented proliferation of vascular smooth muscle cells, complex formation between JAK2 and Raf-1, the tyrosine phosphorylation of Raf-1, and the activation of ERK1 in response to either angiotensin II or platelet-derived growth factor. However, AG-490 had no effect on angiotensin II- or platelet-derived growth factor-induced Ras/Raf-1 complex formation. Our results indicate that: 1) STAT proteins play an essential role in angiotensin II-induced vascular smooth muscle cell proliferation, 2) JAK2 plays an essential role in the tyrosine phosphorylation of Raf-1, and 3) convergent mitogenic signaling cascades involving the cytosolic kinases JAK2, MEK1, and ERK1 mediate vascular smooth muscle cell proliferation in response to both growth factor and G protein-coupled receptors.

Original languageEnglish (US)
Pages (from-to)24684-24690
Number of pages7
JournalJournal of Biological Chemistry
Volume272
Issue number39
DOIs
Publication statusPublished - Sep 26 1997

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this